首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 782 毫秒
1.
建立氢化物发生–原子吸收光谱法联用测定铅粉中痕量砷、锑的方法。试样用稀硝酸溶解,用5%抗坏血酸溶液作为砷(Ⅴ)、锑(Ⅴ)的预还原剂,5%的硫脲溶液作为其它元素的掩蔽剂,选用1%硼氢化钠溶液作为还原剂,氢化物反应在10%盐酸介质中进行。在优化的试验条件下,砷、锑的质量浓度在0~20 ng/m L范围内与吸光度线性相关,相关系数r2分别为砷0.999 6,锑0.993 8,方法的检出限分别为砷0.40 ng/m L,锑0.75 ng/m L。砷、锑测定结果的相对标准偏差分别为4.96%,6.27%(n=6),铅粉样品加标回收率分别为砷87.6%,锑79.3%。该方法准确可靠,可用于测定铅粉中痕量砷、锑。  相似文献   

2.
建立用氢化物发生–原子荧光光度计同时测定锌锭样品中砷和锑含量的方法。采用硝酸一次溶样,加入酒石酸防止锑水解。加入硫脲–抗坏血酸混合溶液作为还原剂和掩蔽剂,消除干扰元素的影响,对实验条件进行了优化。砷和锑的负高压分别为220,200 V,灯电流分别为80,60 mA,还原剂为1%硼氢化钾溶液(含0.5%KOH),载流为10%盐酸溶液,还原时间为30 min。测定砷的线性范围为0~80 ng/mL,相关系数r=0.999 8,检出限为0.35μg/L,测定结果的相对标准偏差为3.18%(n=11);测定锑的线性范围为0~80 ng/mL,相关系数r=0.999 6,检出限为0.42μg/L,测定结果的相对标准偏差为4.32%(n=11),砷和锑的加标回收率在97.46%~100.30%之间。用该方法对标准样品进行测定,测定结果与标准值相符。该方法基体干扰少,灵敏度高,适合于锌锭中砷和锑的日常测定。  相似文献   

3.
铝合金样品用盐酸及硝酸的混合酸溶解,于分取的部分试样溶液中加入碘化钾-硫脲混合溶液后用盐酸(5+95)定容为50 mL,供氢化物发生-原子荧光光谱法测定其中痕量锑。用40 g.L-1碘化钾溶液作为锑(Ⅴ)的预还原剂,40 g.L-1硫脲溶液作为其他可形成氢化物的元素的掩蔽剂,选用20 g.L-1硼氢化钾溶液作为产生锑化氢的还原剂,氢化物发生反应在盐酸(5+95)介质中进行,锑的质量浓度在0.05~50.0μg.L-1范围内与相应的荧光强度呈线性关系。方法的检出限(3s/k)为0.016μg.L-1。应用此方法分析了两件铝合金标准样品,测得锑量的结果与认定值相符,测定值的相对标准偏差(n=8)分别为2.14%和3.16%。  相似文献   

4.
采用氢化物发生-原子荧光光谱法同时测定饮用水中砷和锑。在盐酸(1+9)溶液中,加入硼氢化钾溶液作还原剂,使其与溶液中砷(Ⅲ)及锑(Ⅲ)离子反应生成氢化物。分析中采用载气及屏蔽气的流量依次为400mL·min~(-1)及800mL·min~(-1)。试样溶液中加入硫脲及抗坏血酸混合溶液作为预还原剂,于仪器中引入1.0mL试样溶液,按所选定的工作条件操作。砷及锑的质量浓度均在10.0μg·L~(-1)以内与其对应的荧光强度呈线性关系,砷和锑的检出限(3S/N)依次为0.087μg·L~(-1)和0.048μg·L~(-1)。应用此法对饮用水进行分析,测得砷和锑的回收率分别在90.5%~93.3%和92.5%~95.3%之间。  相似文献   

5.
提出了一种提高氢化物生成效率的新方法——对喷式氢化物发生(HG)原子荧光光谱法(AFS),并同时测定烟叶中痕量砷和锑。样品和还原剂(KBH4)从相对的方向高速喷出在近雾化状态下发生反应生成氢化物。同常规HG-AFS相比,灵敏度提高了15倍。在最优的实验条件下,砷和锑的检出限分别为6.3ng/L和19.2ng/L;相对标准偏差(RSD)分别为3.2%和1.8%;线性范围为0.019~3.2μg/L(As)和0·058~9.6μg/L(Sb)。本方法成功地用于测定烟叶中痕量砷和锑,回收率为92%~106%。  相似文献   

6.
提出了氢化物发生-原子荧光光谱法测定核电用钢中痕量锡的方法。样品在酒石酸溶液存在下,用盐酸-硝酸(3+1)混合酸溶解,用50 g·L-1硫脲-抗坏血酸混合溶液作掩蔽剂,20 g·L-1硼氢化钾溶液作为锡(Ⅳ)的还原剂,氢化反应在pH 5.0~5.5介质中进行,锡的质量浓度在50μg·L-1范围以内与相应的荧光强度呈线性关系,方法的检出限(3s/k)为0.4μg·L-1。应用此方法分析了核电用钢及不锈钢标准样品中锡的含量,并与电感耦合等离子体原子发射光谱法作了比较,测定值与标准值相符,结果的相对标准偏差(n=8)均小于4.5%。  相似文献   

7.
研究了一种小型同心氢化物发生器配置一个气液分离器后与多道ICP-AES联用,同时测定水和生物样品中砷、铋、锑、硒的方法。检出限为砷0.4μg/L,铋0.5μg/L,锑1.4μg/L,硒0.5μg/L,相对标准偏差为砷2.7%,铋1.5%,锑2.7%,硒1.9%。用本法测定美国和国家标准物质中的氢化元素,结果满意。  相似文献   

8.
样品经盐酸-硝酸(3+1)溶液溶解,高氯酸冒烟后,用氢化物发生-电感耦合等离子体原子发射光谱法测定钢中微量砷、锑和铋的含量。研究了介质的酸度、硼氢化钾的浓度对3种元素信号强度的影响,并考察了其他元素对3元素测量的化学干扰。选择波长为189.042,217.58,223.06nm的3条谱线依次作为测定砷、锑和铋的分析线。砷、锑和铋的检出限(3s/k)分别为0.48,3.5,2.0μg.L-1。应用此法测定2个标准样品(GSBH40064-93和BH4265)中3种元素的含量,测定值与标准值相一致。  相似文献   

9.
采用微波消解法用硝酸-过氧化氢(3+1)溶液消解样品,以硫脲及抗坏血酸混合溶液作为预还原剂,利用氢化物发生-原子荧光光谱法测定中药材当归、丹参、甘草、三七和黄芪中痕量砷的含量。在盐酸(3+97)溶液中加入溶于20g.L-1氢氧化钾溶液中的10g.L-1硼氢化钾溶液使与溶液中砷离子反应生成氢化物。分析中采用载气流量为800mL.min-1。砷的质量浓度在12μg.L-1以内与其对应的荧光强度呈线性关系,方法的检出限(3s/k)为0.020μg.L-1。应用此法对国家标准物质人发(GBW 09101)进行分析,测定值与认定值一致。  相似文献   

10.
应用氢化物发生-原子荧光光谱法测定了岩石中砷和锑的含量。样品预先粉碎至通过孔径为0.25~0.42mm的细筛,称取此粉碎的样品0.1000~0.3000g,先于盐酸-硝酸(3+1)混合酸8mL中浸泡30 min,然后放入沸水浴中消解2 h,将溶液及不溶物一起移入50 mL容量瓶中,加水定容。移取上清液5.00mL置于10mL容量瓶中,加入100g·L~(-1)硫脲及抗坏血酸混合溶液2.5mL,用盐酸(5+95)溶液定容,分取此溶液1.0mL进样按选定的仪器条件进行分析。用20g·L~(-1)硼氢化钾溶液作为产生砷及锑的氢化物的还原剂,砷(Ⅲ)及锑(Ⅲ)的质量浓度依次在0.50~60μg·L~(-1)和0.50~80μg·L~(-1)范围内与其相应的荧光强度呈线性关系。应用此方法测定了两种岩石标准物质(GBW 07106及GBW 07108)中的砷及锑量,其测定值与认定值一致,相对标准偏差(n=5)均小于3.5%。  相似文献   

11.
An analytical method for the separation and quantification of Sb(III) and Sb(V) using anion chromatography with ICP-MS is presented. The optimum conditions for the separation of the antimony species were established with 15 mmol/L nitric acid at pH 6 as eluent system on a PRP-X100 column. The retention times for antimony(V) and antimony(III) were 85 s and 300 s with detection limits of 0.06 μg/L and 0.29 μg/L, respectively. The proposed method was applied to cell extracts of Leishmania donovani, which were incubated with antimony(III) and antimony(V). Some metabolism seemed to occur within the cells.  相似文献   

12.
The stability of arsenic, selenium, antimony and tellurium species in water and urine (NIST SRM 2670n) as well as in extracts of fish and soil certified reference materials (DORM-2 and NIST SRM 2710) has been investigated. Stability studies were carried out with As(III), As(V), arsenobetaine, monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), phenylarsonic acid (PAA), Se(IV), Se(VI), selenomethionine, Sb(III), Sb(V) and Te(VI). Speciation analysis was performed by on-line coupling of anion exchange high-performance liquid chromatography (HPLC) with inductively coupled plasma mass spectrometry (ICP-MS). Best storage of aqueous mixtures of the examined species was achieved at 3 degrees C whereas at -20 degrees C species transformation especially of selenomethionine and Sb(V) took place and a new selenium species appeared within a period of 30 days. Losses and species transformations during extraction processes were investigated. Extraction of the spiked fish material with methanol/water led to partial conversion of Sb(III), Sb(V) and selenomethionine to two new antimony and one new selenium species. The other arsenic, selenium and tellurium species were almost quantitatively extracted. For soil spiked with MMA, PAA, Se(IV) and Sb(III), recoveries after extraction with water and sulfuric acid (0.01 mol/L) were below 20%.  相似文献   

13.
A novel absorbent was prepared by dimercaptosuccinic acid chemically modifying mesoporous titanium dioxide and was employed as the micro-column packing material for simultaneous separation/preconcentration of inorganic arsenic and antimony species. It was found that both trivalent and pentavalent of inorganic As and Sb species could be adsorbed quantitatively on dimercaptosuccinic acid modified TiO2 within a pH range of 4–7, and only As(III) and Sb(III) could be quantitatively retained on the micro-column within a pH range of 10–11 while As(V) and Sb(V) were passed through the micro-column without the retention. Based on this fact, a new method of flow injection on-line micro-column separation/preconcentration coupled to inductively coupled plasma optical emission spectrometry was developed for simultaneous speciation of trace inorganic arsenic and antimony in natural waters. Under the optimized conditions, an enrichment factor of 10 and sampling frequency of 10 h− 1 were obtained with on-line mode. The detection limits of As(III), As(V), Sb(III), and Sb(V) are 0.53, 0.49, 0.77 and 0.71 ng mL− 1 for on-line mode and as low as 0.11, 0.10, 0.15 and 0.13 ng mL− 1 for off-line mode due to its higher enrichment factor (50), respectively. The relative standard deviations of two modes are less than 6.7% (C = 20 ng mL− 1, n = 7). The concentration ratio of lower oxidation states/higher oxidation states changing from 1:10 to 10:1 has no obvious effect on the recoveries of As(III) and Sb(III). In order to validate the developed method, two certified reference materials of GSBZ5004-88 and GBW(E)080545 water sample were analyzed and the determined values are in good agreement with the certified values. The proposed method was successfully applied to the simultaneous speciation of inorganic arsenic and antimony in natural waters.  相似文献   

14.
A solvent extraction preconcentration as well as separation method involving ammonium pyrrolinedithiocarbamate (APDC) and 4-methyl-2-pentanone (MIBK) in conjunction with neutron activation analysis (NAA) was developed for the simultaneous measurement of low levels of inorganic arsenic, antimony and selenium species in natural waters. Several critical factors affecting the APDC/MIBK-NAA method were studied in detail including the selection of chelating agent, solvent, aqueous pH for the extraction of six species as well as a few organoarsenic species as representatives for organic species, the stability of the complexes in organic phase, phase volume ratios for extraction and back-extraction steps, and the reduction of the species from higher to lower oxidation state. The detection limits for arsenic, antimony and selenium were found to be as low as 0.026, 0.010 and 0.12 μg L?1, respectively. Trace amounts of As(III), As(V), Sb(III), Sb(V), and Se(IV) in different types of natural water sample and two water certified reference materials were measured using the APDC/MIBK-NAA method.  相似文献   

15.
Selective sorption of the Sb(III) chelate with ammonium pyrrolidine dithiocarbamate (APDC) on a microcolumn packed with C16-bonded silica gel phase was used for the determination of Sb(III) and of total inorganic antimony after reducing Sb(V) to Sb(III) by l-cysteine. A flow injection system composed of a microcolumn connected to the tip of the autosampler was used for preconcentration. The sorbed antimony was directly eluted with ethanol into the graphite furnace and determined by AAS. The detection limit for antimony was significantly lowered to 0.007 μg l−1 in comparison to 1.7 μg l−1 for direct injection GFAAS. This procedure was applied for speciation determinations of inorganic antimony in tap water, snow and urine samples. For the investigation of long-term stability of antimony species a flow injection hydride generation atomic absorption spectrometry with quartz tube atomization (FI HG QT AAS) and GFAAS were used for selective determination of Sb(III) in the presence of Sb(V) and total content of antimony, respectively. Investigations on the stability of antimony in several natural samples spiked with Sb(III) and Sb(V) indicated instability of Sb(III) in tap water and satisfactory stability of inorganic Sb species in the presence of urine matrix.  相似文献   

16.
Antimony is a common contaminant at abandoned sites for non-ferrous ore mining and processing. Because of the possible risk of antimony by transfer to plants growing on contaminated sites, it is of importance to analyze antimony and its species in such biota. A method based on high performance liquid chromatographic separation and inductively coupled plasma mass spectrometric detection (HPLC-ICP-MS) was developed to determine inorganic antimony species such as Sb(III) and Sb(V) as well as possible antimony-organic metabolisation products of the antimony transferred into plant material within one chromatographic run. The separation is performed using anion chromatography on a strong anion exchange column (IonPac AS15/AG 15). Based on isocratic optimizations for the separation of Sb(III) and Sb(V) as well as Sb(V) and trimenthylated Sb(V) (TMSb(V)), a chromatographic method with an eluent gradient was developed. The suggested analytical method was applied to aqueous extracts of Chinese break fern Pteris vittata samples. The transfer of antimony from spiked soil composites into the fern, which is known as a hyperaccumulator for arsenic, was investigated under greenhouse conditions. Remarkable amounts of antimony were transferred into roots and leaves of P. vittata growing on spiked soil composites. Generally, P. vittata accumulates not only arsenic (as shown in a multiplicity of studies in the last decade), but also antimony to a lower extent. The main contaminant in the extracts was Sb(V), but also elevated concentrations of Sb(III) and TMSb(V) (all in μg L−1 range). An unidentified Sb compound in the plant extracts was detected, which slightly differ in elution time from TMSb(V).  相似文献   

17.
A rapid procedure has been developed for the mutual separation of antimony and arsenic using tribenzylamine as the extracting agent. The extraction behaviours of Sb(III), Sb(V), As(III), As(V) and Au(III) have been studied as a function of the acidity of the aqueous phase. Various factors which affect the extraction of these complexes have been studied and optimized. The procedure was then applied to lead base alloy for the simultaneous determination of antimony, arsenic and copper. Chemical recoveries were quantitative and only about one hour is required for the chemical processing of duplicate samples.  相似文献   

18.
Li Z  Yang X  Guo Y  Li H  Feng Y 《Talanta》2008,74(4):915-921
Chemical vapor generation (CVG) coupled with non-dispersive atomic fluorescence spectrometry (NDAFS) has been widely used for determination of vapor-forming elements, but most of such works have been focused on single element analysis, and reports dealing with more than three elements simultaneous determination by CVG-NDAFS are rare. In this work, a sensitive and robust analytical procedure for the simultaneous determination of arsenic, antimony, bismuth and mercury in geological materials using vapor generation-four-channel non-dispersive atomic fluorescence spectrometry has been developed. The conditions of instrumentation and vapor generation of arsenic, antimony, bismuth and mercury were optimized. The optimized concentrations of KBH(4) and HCl required for analytes generation were 1.3% (m/v) and 20% (v/v), respectively. The interferences of coexisting ions and mutual hydride interferences were investigated carefully. One thousand milligrams per litre of Fe(3+); 500mgl(-1) of Pb(2+), Zn(2+), Mn(2+); 50mgl(-1) Cu(2+), Ni(2+), Cr(6+), Co(2+); 10mgl(-1) Ag(+) and 5mgl(-1) Au(3+) does not interfere with the determination of As, Sb, Bi and Hg. Associating a dilution of 1:250 (m/v) in the procedure of sample pretreatment, the tolerant concentrations of As, Sb, Bi and Hg in real geological materials are 2500, 1000, 250 and 5000ppm, respectively. Under optimal conditions, the detection limits for As, Sb, Bi and Hg were determined to be 0.068, 0.047, 0.037 and 0.008ngml(-1), respectively. The precisions for seven replicate determinations at the 5ngml(-1) of As, Sb, Bi and 1ngml(-1) of Hg were 0.47, 0.60, 0.97 and 0.93% (R.S.D.), respectively. Sample digestion was carried out on 500mg sample with 3ml HNO(3) and 10ml HCl, followed by addition of thiourea solution for the quantitative reduction of As(V), Sb(V) to As(III), Sb(III). The proposed method was successfully applied to the simultaneous determination of As, Sb, Bi and Hg in a series of certified geological reference materials using simple aqueous standard calibration technique. The results obtained are in good agreement with the certified values.  相似文献   

19.
This article deals with the electrocatalytic and electrochemical mechanisms of hydride formation and their dependence on hydrogen overvoltage. A three-electrode-arrangement was used to determine the hydrogen overvoltage of different cathode materials (Pt, Au, Ag, glassy carbon, Cd, Pb, amalgamated Ag). The applicability of these cathode materials was tested for hydride formation using As(III), As(V), Sb(III), Sb(V), Se(IV), and Sn(IV). Glassy carbon is the most suitable cathode material for hydride generation with As(III), Sb(III), Se(IV), and Sn(IV). Hg–Ag is well suited for the production of stibine and arsine. As(III), As(V), Sb(III), and Sb(V) were all converted into their hydrides with efficiencies > 90%. A detection limit in the range of 0.11–0.13 μg L–1 for As and Sb (sample volume 200 μL) was obtained for cathode materials with a high hydrogen overvoltage. The precision of replicate measurements was better than 5% calculated as variation coefficient. The accuracy of the presented method was verified by analysis of certified reference materials and tissues of cancer patients. The recovery rates for As and Se were calculated to be 93–108%.  相似文献   

20.
Arsenic (0.1–5 μg), antimony (1–40 μg), tin (0.5–10 μg) and germanium (0.2–10 μg) are determined simultaneously by reduction to their hydrides with sodium tetrahydroborate(III), followed by gas chromatographic separation on a column of 10% E-301 silicone gum rubber on Porapak Q, and measurement of the emissions at 490 nm in an oxygen/hydrogen flame within a cavity. Detection limits for 1-ml samples are 35 ng As, 400 ng Sb, 85 ng Sn and 100 ng Ge. A more sensitive determination of arsenic (0.05–3 μg) and antimony (0.1–5 μg) in binary mixtures is also described; the detection limits are 15 ng As and 40 ng Sb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号