首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
A mixed-mode (I + II) crack model with a plastic strip on its continuation under plane strain is proposed. The stress components within the strip are determined from the yield conditions, stress limitation, and relationship between the normal stress components defined via the principal stress state. The crack parameters are analyzed for the Mises yield condition. In the quasibrittle case, the governing system of equations includes stress intensity factors K I, K II, and T-stresses  相似文献   

2.
Finite element method (FEM) has been used to analyze the stress and strain fields and the stress tri-axial levels around the tip of the crack under mode- II loading. The results show that: under mode- II loading, the direction of the maximum tensile stress and that of the maximum tri-axial levels (R o ) exist at an angle of –75. 3° from the original crack plane; the maximum shear stress andR o = 0 exist along the original crack plane.Mode- II loading experiment using BHW-35 steel at different temperatures show that there are two kinds of fracture mode, opening mode (or tensile mode) and sliding mode (or shear mode). A decrease in temperature causes the fracture mode to change from shear mode to tensile mode. For BHW-35 steel, this critical temperature is about –90 C. Actually, under any kind of loading mode (mode I . mode II , mode III or mixed mode), there always exist several kinds of potenital fracture modes (for example, opening mode, sliding mode, tearing mode or mixed mode). The effect of temperature under mode- II loading is actually related to the change of the elastic-plastic properties of the material.  相似文献   

3.
The paper gives explicit expressions of the elastic T-stress components T I, T II, and T III for an elliptic crack in an unbounded body under uniform pressure and bending and expressions of all the T-stress components for parabolic and tunnel cracks under uniform loading. These formulas are derived by analyzing the asymptotic behavior of the stress components near the crack front using special harmonic functions. The dependence of the T-stresses on Poisson’s ratio, semiaxes and parametric angle of the elliptic crack is studied. The expressions of T I, T II, and T III for a penny-shaped crack under arbitrary uniform pressure and bending follow as a special case from the respective expressions for an elliptic crack __________ Translated from Prikladnaya Mekhanika, Vol. 43, No. 8, pp. 57–70, August 2007.  相似文献   

4.
A novel experimental technique for measuring crack tipT-stress, and hence in-plane crack tip constraint, in elastic materials has been developed. The method exploits optimal positioning of stacked strain gage rosette near a mode I crack tip such that the influence of dominant singular strains is negated in order to determineT-stress accurately. The method is demonstrated for quasi-static and low-velocity impact loading conditions and two values of crack length to plate width ratios (a/W). By coupling this new method with the Dally-Sanford single strain gage method for measuring the mode I stress intensity factorK I , the crack tip biaxiality parameter is also measured experimentally. Complementary small strain, static and dynamic finite element simulations are carried out under plane stress conditions. Time histories ofK I andT-stress are computed by regression analysis of the displacement and stress fields, respectively. The experimental results are in good agreement with those obtained from numerical simulations. Preliminary data for critical values ofK I and β for dynamic experiments involving epoxy specimens are reported. Dynamic crack initiation toughness shows an increasing trend as β becomes more negative at higher impact velocities.  相似文献   

5.
Through detailed three-dimensional (3D) finite element (FE) calculations, the out-of-plane constraints Tz along embedded center-elliptical cracks in mode I elastic plates are studied. The distributions of Tz are obtained near the crack front with aspect ratios (a/c) of 0.2, 0.4, 0.5, 0.6, 0.8 and 1.0. Tz decreases from an approximate value of Poisson ratio ν at the crack tip to zero with increasing normalized radial distances (r/a) in the normal plane of the crack front line, and increases gradually when the elliptical parameter angle ϕ changes from 0° to 90°at the same r/a. With a/c rising to 1.0, Tz is getting nearly independent of ϕ and is only related to r/a. Based on the present FE calculations for Tz, empirical formulas for Tz are obtained to describe the 3D distribution of Tz for embedded center-elliptical cracks using the least squares method in the range of 0.2≤a/c≤1.0. These Tz results together with the corresponding stress intensity factor K are well suitable for the analysis of the 3D embedded center-elliptical crack front field, and a two-parameter K-Tz principle is proposed. The project supported by the National Natural Science Foundation of China (50275073) The English text was polished by Keren Wang.  相似文献   

6.
We study dynamic crack problems for an elastic plate by using Kane-Mindlin's kinematic assumptions. The general solutions of the Laplace transformed displacements and stresses are first derived. Path independent integrals for stationary cracks subjected to transient loads and steadily growing cracks are deduced. For a stationary crack in a very thin plate subjected to impact loads, the crack tip dynamic stress intensity factor (DSIF), K1(t), is related to the far field plane stress one, K10(t), by where ν is Poisson's ratio. For a crack steadily growing with speed V, the crack tip DSIF, K1(V), is given by where K10(V) is the plane stress DSIF and A(V) and B(V) are known functions of V. These results are applied to compute the DSIF for a semi-infinite stationary crack in an unbounded plate subjected to impact pressure on the crack faces. The results of DSIF for a finite crack in an infinite plate under uniform impact pressure on the crack surfaces show that for each plate thickness, the maximum DSIF is higher than that for the plane stress case.  相似文献   

7.
8.
A practice used in linear elastic fracture mechanics is the projection of a crack onto a plane normal to the principal tensile stress axes for computing the stress intensity factor KI. The minimum strain-energy criterion is applied for different crack configurations with the introduction of a safety factor Si which is the ratio of the strain energy density factor of the projected crack and that of the original crack. Numerous crack configurations are investigated to illustrate the degree of conservativeness of the crack projection procedure.  相似文献   

9.
For a crack subjected to combined mode I and III loading the influence of a T-stress is analyzed, with focus on crack growth. The solid is a ductile metal modelled as elastic–plastic, and the fracture process is represented in terms of a cohesive zone model. The analyzes are carried out for conditions of small scale yielding, with the elastic solution applied as boundary conditions on the outer edge of the region analyzed. For several combinations of the stress intensity factors KI and KIII and the T-stress crack growth resistance curves are calculated numerically in order to determine the fracture toughness. In all situations it is found that a negative T-stress adds to the fracture toughness, whereas a positive T-stress has rather little effect. For given values of KI and T the minimum fracture toughness corresponds to KIII = 0.  相似文献   

10.
Quasi-static mixed mode crack initiation and growth in functionally graded materials (FGMs) was studied through fracture experiments on polymer-based FGMs manufactured by selective ultraviolet irradiation poly(ethylene carbon monoxide)—a photo-sensitive copolymer that becomes more brittle and stiffer under ultraviolet irradiation. The objective of the study was to determine whether crack kinking criteria for homogeneous materials, e.g., maximum hoop stress criterion, also hold for FGMs. Single edge notched tension specimens with different spatial variations of Young's modulus, failure stress and failure strain, were tested. Near tip mode mixity was introduced either by inclining the crack to the remote loading direction, as in the case of homogeneous materials, or to the direction of material gradient, or both. A full-field digital image correlation technique was used to measure in real-time the displacement field around the crack tip while it propagated through the graded material, and to extract the fracture parameters of stress intensity factor K I and K II , and the T-stress. It was found that the nonsingular T-stress term in the asymptotic expansion for stresses plays a very important role in accurately measuring fracture parameters. It was also found that the maximum tangential stress criterion can be applied to the case of FGMs to predict crack kinking provided that the effect of the T-stress is accounted for and the process zone size is small compared to the intrinsic material gradient length scale. However, for accurate crack path prediction at a length scale comparable to the material gradient, detailed material property information is required. In general, the crack will propagate towards a region that exhibits less fracture toughness, but, unlike the case of homogeneous materials, along a path where K II is not necessarily equal to zero.  相似文献   

11.
A numerical/analytical approach is proposed to determine the stress intensity factors KI, KII, and KIII of a 3D internal crack. The main point of this approach is the meshing technique that can model very sharp crack fronts. The meshing technique is based on an elliptical coordinate transformation that starts from a circular crack. It allows the obtainment of a curved crack front with elements normal to the crack front. Remarkable accuracy can be obtained for elliptical crack fronts with axes ratio smaller that 0.01. Accuracy demonstration is provided for cylindrical element with an inclined internal crack subjected to uni-axial tension. This case corresponds to crack propagation for all three modes of loading, the solution of which can checked with references’ results.  相似文献   

12.
Conclusions Thus, the influence of the initial stress on the displacement distribution in the crack plane is significant. In [6], it was concluded that, for a shear crack, it is impossible to show in the general case that the initial stress has no influence on the stress-intensity coefficients (which is the case for a normal-rupture crack). For the example of an elliptical shear crack, it is shown that the initial stress influences the stress distribution close to the crack and hence the stress-intensity coefficient, in contrast to the plane and axisymmetric problems.Close to the value of 1 equal to the surface instability of the half space, as follows from a consideration of quantitative dependences, its influence is sharply expressed.The stress and displacement distribution in a body with initial stress (y 30) will differ from the corresponding distribution in a linear isotropic and transversally isotropic elastic body with no initial stress.Institute of Mechanics. Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Prikladnaya Mekhanika, Vol. 20, No. 10, pp. 22–31, October, 1984.  相似文献   

13.
Hancock and Cowling measured the critical crack tip opening displacements, δf, at fracture initiation in HY-80 steel specimens of six different configurations. δf varied from 90 μm in a deeply double-edge-cracked tensile panel to 900 μm in a single-edge-cracked tensile panel.McMeeking and Parks, and Shih and German have shown by their finite element calculations that the characteristics of the plane strain crack tip fields in both large scale yielding and general yielding are strongly dependent on specimen geometry and load level.In this study, the plane strain crack tip fields in the specimens tested by Hancock and Cowling were calculated using the finite element method. The crack tip triaxial tensile stress field is strongly affected by specimen geometric constraint, and the state of the triaxial tensile stress in a crack tip region is monitored by the ratio between the local tensile stress and the effective stress, i.e., ( ), at a distance x=2δ from the crack tip. The values of ( ) vary from 3.1 for the double-edge-cracked tensile panel to 1.7 for the single-edge-cracked tensile panel. The δf measured by Hancock and Cowling correlates very well with the ratio ( ). δf is a measure of the fracture ductility of the material ahead of the crack tip, and the ductility decreases with an increase in the triaxial tensile stress, i.e., the ratio ( ).  相似文献   

14.
The mode I plane strain crack tip field with strain gradient effects is presented in this paper based on a simplified strain gradient theory within the framework proposed by Acharya and Bassani. The theory retains the essential structure of the incremental version of the conventionalJ 2 deformation theory. No higher-order stress is introduced and no extra boundary value conditions beyond the conventional ones are required. The strain gradient effects are considered in the constitutive relation only through the instantaneous tangent modulus. The strain gradient measures are included into the tangent modulus as internal parameters. Therefore the boundary value problem is the same as that in the conventional theory. Two typical crack problems are studied: (a) the crack tip field under the small scale yielding condition induced by a linear elastic mode-IK-field and (b) the complete field for a compact tension specimen. The calculated results clearly show that the stress level near the crack tip with strain gradient effects is considerable higher than that in the classical theory. The singularity of the strain field near the crack tip is nearly equal to the square-root singularity and the singularity of the stress field is slightly greater than it. Consequently, theJ-integral is no longer path independent and increases monotonically as the radius of the calculated circular contour decreases. The project supported by the National Natural Science Foundation of China (19704100 and 10202023) and the Natural Science Foundation of Chinese Academy of Sciences (KJ951-1-20)  相似文献   

15.
The strain gradient effect becomes significant when the size of fracture process zone around a crack tip is comparable to the intrinsic material lengthl, typically of the order of microns. Using the new strain gradient deformation theory given by Chen and Wang, the asymptotic fields near a crack tip in an elastic-plastic material with strain gradient effects are investigated. It is established that the dominant strain field is irrotational. For mode I plane stress crack tip asymptotic field, the stress asymptotic field and the couple stress asymptotic field can not exist simultaneously. In the stress dominated asymptotic field, the angular distributions of stresses are consistent with the classical plane stress HRR field; In the couple stress dominated asymptotic field, the angular distributions of couple stresses are consistent with that obtained by Huang et al. For mode II plane stress and plane strain crack tip asymptotic fields, only the stress-dominated asymptotic fields exist. The couple stress asymptotic field is less singular than the stress asymptotic fields. The stress asymptotic fields are the same as mode II plane stress and plane strain HRR fields, respectively. The increase in stresses is not observed in strain gradient plasticity for mode I and mode II, because the present theory is based only on the rotational gradient of deformation and the crack tip asymptotic fields are irrotational and dominated by the stretching gradient. The project supported by the National Natural Science Foundation of China (19704100), National Natural Science Foundation of Chinese Academy of Sciences (KJ951-1-20), CAS K.C. Wong Post-doctoral Research Award Fund and Post-doctoral Science Fund of China  相似文献   

16.
Using dislocation simulation approach, the basic equation for a finite crack perpendicular to and terminating at a bimaterial interface is formulated. A novel expansion method is proposed for solving the problem. The complete solution to the problem, including the explicit formulae for theT stresses ahead of the crack tip and the stress intensity factors are presented. The stress field characteristics are analysed in detail. It is found that normal stresses {ie27-1} and {ie27-2} ahead of the crack tip, are characterised byQ fields if the crack is within a stiff material and the parameters |p T | and |q T | are very small, whereQ is a generalised stress intensity factor for a crack normal to and terminating at the interface. If the crack is within a weak material, the normal stresses {ie27-3} and {ie27-4} are dominated by theQ field plusT stress. This work was supported by the Swedish Research Council for Engineering Sciences.  相似文献   

17.
Crack line field analysis method has become an independent method for crack elastic-plastic analysis, which greatly simplifies the complexity of crack elastic-plastic problems and overcomes the corresponding mathematical difficulty. With this method, the precise elastic-plastic solutions near crack lines for variety of crack problems can be obtained. But up to now all solutions obtained by this method were for different concrete problems, no general steps and no general form of matching equations near crack line are given out. With crack line analysis method, this paper proposes the general steps of elastic-plastic analysis near crack line for mode Ⅰ crack in elastic-perfectly plastic solids under plane stress condition, and in turn given out the solving process and result for a specific problem.  相似文献   

18.
Fatigue crack growth is caused primarily by shear decohesion due to dislocation motion in the crack tip region. The resolved shear stress, which drives dislocation in a crystal, is strongly orientation dependent, and therefore, the cyclic plastic deformation of the shear decohesion process is highly anisotropic.The crack planes are often inclined to the loading axis both in the inplane orientation and in the thickness direction. This inclination induces all three modes of the crack tip stress field, KI, KII, and KIII.Fatigue crack growth in large-grain Al 7029 aluminum alloy was studied. The crack tip stress fields of the test specimens are calculated with the finite element method. The values of KI, KII, and KIII are evaluated. The orientation of the crystal at a crack tip was determined with the Laue X-ray method. The crystal orientation and the calculated crack tip stress fields are used to compute the resolved shear stress intensity of each of the twelve slip systems of the crystal at the crack tip. The resolved shear stress field of a slip system is linearly proportional to the resolved shear stress intensity coefficient, RSSIC.The values of RSSIC thus evaluated are used to analyze the orientations of the crack plane and to correlate with the shear fatigue crack growth rate.  相似文献   

19.
The fracturing of glass and tearing of rubber both involve the separation of material but their crack growth behavior can be quite different, particularly with reference to the distance of separation of the adjacent planes of material and the speed at which they separate. Relatively speaking, the former and the latter are recognized, respectively, to be fast and slow under normal conditions. Moreover, the crack tip radius of curvature in glass can be very sharp while that in the rubber can be very blunt. These changes in the geometric features of the crack or defect, however, have not been incorporated into the modeling of running cracks because the mathematical treatment makes use of the Galilean transformation where the crack opening distance or the change in the radius of curvature of the crack does not enter into the solution. Change in crack speed is accounted for only via the modulus of elasticity and mass density. For this simple reason, many of the dynamic features of the running crack have remained unexplained although speculations are not lacking. To begin with, the process of energy dissipation due to separation is affected by the microstructure of the material that distinguishes polycrystalline from amorphous form. Energy extracted from macroscopic reaches of a solid will travel to the atomic or smaller regions at different speeds at a given instance. It is not clear how many of the succeeding size scales should be included within a given time interval for an accurate prediction of the macroscopic dynamic crack characteristics. The minimum requirement would therefore necessitate the simultaneous treatment of two scales at the same time. This means that the analysis should capture the change in the macroscopic and microscopic features of a defect as it propagates. The discussion for a dual scale model has been invoked only very recently for a stationary crack. The objective of this work is to extend this effort to a crack running at constant speed beyond that of Rayleigh wave. Developed is a dual scale moving crack model containing microscopic damage ahead of a macroscopic crack with a gradual transition. This transitory region is referred to as the mesoscopic zone where the tractions prevail on the damaged portion of the material ahead of the original crack known as the restraining stresses, the magnitude of which depends on the geometry, material and loading. This damaged or restraining zone is not assumed arbitrarily nor assumed to be intrinsically a constant in the cohesive stress approach; it is determined for each step of crack advancement. For the range of micronotch bluntness with 0 < β < 30° and 0.2 σ/σ0 0.5, there prevails a nearly constant restraining zone size as the crack approaches the shear wave speed. Note that β is the half micronotch angle and the applied stress ratio is σ/σ0 with σ0 being the maximum of the restraining stress. For σ/σ0 equal to or less than 0.5, the macrocrack opening displacement COD is nearly constant and starts to decrease more quickly as the crack approaches the shear wave speed. For the present dual scale model where the normalized crack speed v/cs increases with decreasing with the one-half microcrack tip angle β. There prevails a limit of crack tip bluntness that corresponds to β 36° and v/cs 0.15. That is a crack cannot be maintained at a constant speed if the bluntness is increased beyond this limiting value. Such a feature is manifestation of the dependency of the restraining stress on crack velocity and the applied stress or the energy pumped into the system to maintain the crack at a constant velocity. More specifically, the transitory character from macro to micro is being determined as part of the unknown solution. Using the energy density function dW/dV as the indicator, plots are made in terms of the macrodistance ahead of the original crack while the microdefect bluntness can vary depending on the tip geometry. Such a generality has not been considered previously. The macro-dW/dV behavior with distance remains as the inverse r relation yielding a perfect hyperbola for the homogeneous material. This behavior is the same as the stationary crack. The micro-dW/dV relations are expressed in terms of a single undetermined parameter. Its evaluation is beyond the scope of this investigation although the qualitative behavior is expected to be similar to that for the stationary crack. To reiterate, what has been achieved as an objective is a model that accounts for the thickness of a running crack since the surface of separation representing damage at the macroscopic and microscopic scale is different. The transitory behavior from micro to macro is described by the state of affairs in the mesoscopic zone.  相似文献   

20.
In this study, the vortex-induced vibrations of a cylinder near a rigid plane boundary in a steady flow are studied experimentally. The phenomenon of vortex-induced vibrations of the cylinder near the rigid plane boundary is reproduced in the flume. The vortex shedding frequency and mode are also measured by the methods of hot film velocimeter and hydrogen bubbles. A parametric study is carded out to investigate the influences of reduced velocity, gap-to-diameter ratio, stability parameter and mass ratio on the amplitude and frequency responses of the cylinder. Experimental results indicate: (1) the Strouhal number (St) is around 0.2 for the stationary cylinder near a plane boundary in the sub-criti- cal flow regime; (2) with increasing gap-to-diameter ratio (eo/D), the amplitude ratio (A/D) gets larger but frequency ratio (f/fn) has a slight variation for the case of larger values of eo/D(eo/D 〉 0.66 in this study); (3) there is a clear difference of amplitude and frequency responses of the cylin- derbetween the larger gap-to-diameter ratios (e0/D 〉 0.66) and the smaller ones (e0/D 〈 0.3); (4) the vibration of the cylinder is easier to occur and the range of vibration in terms of Vr number becomes more extensive with decrease of the stability parameter, but the frequency response is affected slightly by the stability parameter; (5) with decreasing mass ratio, the width of the lock-in ranges in terms of Vr and the frequency ratio (f/fn) become larger.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号