首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
For over a century the definitions of mass and derivations of its relation with energy continue to be elaborated, demonstrating that the concept of mass is still not satisfactorily understood. The aim of this study is to show that, starting from the properties of Minkowski spacetime and from the principle of least action, energy expresses the property of inertia of a body. This implies that inertial mass can only be the object of a definition—the so called mass-energy relation—aimed at measuring energy in different units, more suitable to describe the huge amount of it enclosed in what we call the “rest-energy” of a body. Likewise, the concept of gravitational mass becomes unnecessary, being replaceable by energy, thus making the weak equivalence principle intrinsically verified. In dealing with mass, a new unit of measurement is foretold for it, which relies on the de Broglie frequency of atoms, the value of which can today be measured with an accuracy of a few parts in 109.  相似文献   

2.
The general scale parameter, having the dimensions of mass squared, is dynamically generated in the QCD gluon sector. It is introduced through the difference between the regularized full gluon self-energy and its value at some finite point. It violates transversality of the full gluon self-energy. The Slavnov-Taylor identity for the full gluon propagator, when it is given by the corresponding equation of motion, is also violated by it. So in order to maintain both transversality and the identity it should be disregarded from the very beginning, i.e., put formally zero everywhere. However, we have shown how to preserve the above-mentioned identity at non-zero mass squared parameter. This allows one to establish the structure of the full gluon propagator when it is explicitly present. Its contribution does not survive in the perturbation theory regime, when the gluon momentum goes to infinity. At the same time, its contribution dominates the structure of the full gluon propagator when the gluon momentum goes to zero. We have also proposed a method how to restore transversality of the relevant gluon propagator in a gauge invariant way, while keeping the mass squared parameter “alive”.  相似文献   

3.
In this article, we perform a systematic study of the mass spectrum of the axial-vector hidden charmed and hidden bottom tetraquark states using the QCD sum rules, and identify the Z +(4430) as an axial-vector tetraquark state tentatively.  相似文献   

4.
5.
In holographic QCD the effects of gluonic condensate can be encoded in a suitable deformation of the 5D metric. We develop two different methods for the evaluation of first order perturbative corrections to masses and decay constants of vector resonances in 5D Hard-Wall models of QCD due to small deformations of the metric. They are extracted either from a novel compact form for the first order correction to the vector two-point function, or from perturbation theory for vector bound-state eigenfunctions: the equivalence of the two methods is shown. Our procedures are then applied to flat and to AdS 5D Hard-Wall models; we complement results of existing literature evaluating the corrections to vector decay constant and to two-pion–one-vector couplings: this is particularly relevant to satisfy the sum rules. We concentrate our attention on the effects for the Gasser–Leutwyler coefficients; we show that as in the Chiral Quark model, the addition of the gluonic condensate improves the consistency, the understanding and the agreement with phenomenology of the holographic model.  相似文献   

6.
In a recent article (Wiseman in New J. Phys. 9:165, 2007), Wiseman has proposed the use of so-called weak measurements for the determination of the velocity of a quantum particle at a given position, and has shown that according to quantum mechanics the result of such a procedure is the Bohmian velocity of the particle. Although Bohmian mechanics is empirically equivalent to variants based on velocity formulas different from the Bohmian one, and although it has been proven that the velocity in Bohmian mechanics is not measurable, we argue here for the somewhat paradoxical conclusion that Wiseman’s weak measurement procedure indeed constitutes a genuine measurement of velocity in Bohmian mechanics. We reconcile the apparent contradictions and elaborate on some of the different senses of measurement at play here.  相似文献   

7.
With the purpose of introducing a useful tool for researches concerning foundations of quantum mechanics and applications to quantum technologies, here we address three quantumness quantifiers for bipartite optical systems: one is based on sub-shot-noise correlations, one is related to antibunching and one springs from entanglement determination. The specific cases of parametric downconversion seeded by thermal, coherent and squeezed states are discussed in detail.  相似文献   

8.
The relativistic problems of neutral fermions subject to a new partially exactly solvable PT-symmetric potential and an exactly solvable PT-symmetric hyperbolic cosecant potential in 1+1 dimensions are investigated. The Dirac equation with the double-well-like mass distribution in the background of the PT-symmetric vector potential coupling can be mapped into the Schrödinger-like equation with the partially exactly solvable double-well potential. The position-dependent effective mass Dirac equation with the PT-symmetric hyperbolic cosecant potential can be mapped into the Schrödinger-like equation with the exactly solvable modified Pöschl-Teller potential. The real relativistic energy levels and corresponding spinor wavefunctions for the bound states have been given in a closed form.  相似文献   

9.
The question of the cause of inertial reaction forces and the validity of Mach's principle are investigated. A recent claim that the cause of inertial reaction forces can be attributed to an interaction of the electrical charge of elementary particles with the hypothetical quantum mechanical zero-point fluctuation electromagnetic field is shown to be untenable. It fails to correspond to reality because the coupling of electric charge to the electromagnetic field cannot be made to mimic plausibly the universal coupling of gravity and inertia to the stress-energy-momentum (i.e., matter) tensor. The gravitational explanation of the origin of inertial forces is then briefly laid out, and various important features of it explored in the last half-century are addressed.  相似文献   

10.
We examine the process of the emission of light from an atom that is in a relative translational motion with respect to the medium at rest in which the electromagnetic excitations propagate. The effect of Lorentz contraction of the of electron orbits on the emitted frequency is incorporated in the Rydberg formula, as well as the emitter’s Doppler effect is acknowledged. The result is that the frequency of the emitted light is modified by a factor that is identical with what is called the ‘relativistic Doppler effect’. The new emission formula is applied for reinterpretation of the Ives-Stilwell experiment and shown that within the second order of approximation with respect to the speeds of the atom and the ‘absolute speed’ (Earth’s speed relative to the medium), the absolute motion does not affect the interference. The expression for the modification of the frequency involves both a first and a second-order term with respect to the speed of the atoms in the cathode tube. The latter turns out to be quantitatively the same as if the time would have changed its rate in the frame moving with the atoms. Thus, a new interpretation of the results of this famous experiment is provided without stipulating time dilation.  相似文献   

11.
Motivated by the dark energy issue, a minisuperspace approach to the stability for modified gravitational models in a four dimensional cosmological setting is investigated. Specifically, after revisiting the f(R) case, R being the Ricci curvature, we present a stability condition around a de Sitter solution valid for modified gravitational models of generalized type F(R,G,Q), G and Q being the Gauss-Bonnet and quadratic Riemann invariants respectively. A generalization to higher order invariants is presented.  相似文献   

12.
This paper suggests a principle to find a unitary operator U which transforms non-hysical quantity,zero-potential Hamiltonian H0,into true physical quantity UH0U for a charged particle in classical electromagnetic field,and puts forward a unified form of constructing gauge-independent transition probabilitites in this case.Different methods correspond to different unitary operators which satisfy the above-mentioned principle.  相似文献   

13.
Non-equilibrium effects resulting from the slow relaxation of inertial particles to statistical equilibrium with flow fluctuations in turbulence are known to have important consequences, but they are not readily incorporated into models. Here, a simple analysis of these effects predicts −2/3 power-law dependence of the particle deposition rate on Stokes number (normalized particle inertia) in the far field of a confined turbulent flow, and a weaker near-field dependence. Near-field measurements and numerical simulations exhibit this weaker dependence, as do models that are generally viewed as validated by this result, but the models fail to capture the newly identified far-field behavior due to their equilibrium assumptions. Quantification of these qualitative observations is obtained by incorporating particle response to fluid motion into ‘one-dimensional turbulence’ (ODT), a stochastic computational model of turbulence.  相似文献   

14.
In this contribution we present a systematic study on the dispersion of SWCNTs in a water-based solution of biocompatible detergent: sodium deoxycholate (DOC). By avoiding harsh chemical conditions, which are known to damage nanotubes structure, a stable SWCNTs suspension was created. Long term stirring of the solution led to preparation of a stable transparent solution, containing well-dispersed isolated SWCNTs. The as-prepared dispersion remained stable and clear for two months. Optical absorption spectroscopy was employed to measure SWCNTs suspension stability. Nanotube aggregation was evaluated through the tangential mode (G mode) present in the Raman spectrum. High-resolution transmission electron microscopy was employed to observe the mechanism of debundling process.  相似文献   

15.
It is pointed out that relativistic classical electron theory with classical electromagnetic zero-point radiation has a scaling symmetry which is suitable for understanding the equilibrium behavior of classical thermal radiation at a spectrum other than the Rayleigh-Jeans spectrum. In relativistic classical electron theory, the masses of the particles are the only scale-giving parameters associated with mechanics while the action-angle variables are scale invariant. The theory thus separates the interaction of the action variables of matter and radiation from the scale-giving parameters. Due to this separation, classical zero-point radiation is invariant under scattering by the charged particles of relativistic classical electron theory. The basic ideas of the matter-radiation interaction are illustrated in a simple relativistic classical electromagnetic example.  相似文献   

16.
We have systematically analysed the dynamic moments of inertia of the experimental superdeformed(SD)bands observed in the A=190,150 and 60-80 mass regions as functions of rotational frequency,By combining the different mass regions,the dramatic features of the dynamic moments of inertia were found and explained based on the calculations of the pairing fields of SD nuclei with the anisotropic harmonic oscillator quadrupole pairing Hartree-Fock-Bogoliubov model.  相似文献   

17.
Technical Physics - Nonlinear oscillations and resonances of a spring–mass system are experimentally and theoretically studied. A unified method for excitation, dissipation, and detection of...  相似文献   

18.
We study the perfect Bose gas in random external potentials and show that there is generalized Bose-Einstein condensation in the random eigenstates if and only if the same occurs in the one-particle kinetic-energy eigenstates, which corresponds to the generalized condensation of the free Bose gas. Moreover, we prove that the amounts of both condensate densities are equal. Our method is based on the derivation of an explicit formula for the occupation measure in the one-body kinetic-energy eigenstates which describes the repartition of particles among these non-random states. This technique can be adapted to re-examine the properties of the perfect Bose gas in the presence of weak (scaled) non-random potentials, for which we establish similar results. In addition some of our results can be applied to models with diagonal interactions, that is, models which conserve the occupation density in each single particle eigenstate.  相似文献   

19.
It has been shown that for the Reissner-Nordström solution to the vacuum Einstein field equations charge, like mass, has a unique space-time signature (Marsh, Found. Phys. 38:293–300, 2008). The presence of charge results in a negative curvature. This work, which includes a discussion of effective mass, is extended here to the Kerr-Newman solution.  相似文献   

20.
We elaborate and compare two approaches to nonequilibrium thermodynamics, the two-generator bracket formulation of time-evolution equations for averages and the macroscopic fluctuation theory, for a purely dissipative isothermal driven diffusive system under steady state conditions. The fluctuation dissipation relations of both approaches play an important role for a detailed comparison. The nonequilibrium Helmholtz free energies introduced in these two approaches differ as a result of boundary conditions. A Fokker-Planck equation derived by projection operator techniques properly reproduces long range fluctuations in nonequilibrium steady states and offers the most promising possibility to describe the physically relevant fluctuations around macroscopic averages for time-dependent nonequilibrium systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号