首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
可控制变频率微片激光器   总被引:1,自引:0,他引:1       下载免费PDF全文
 用20 W光纤耦合LD作为泵浦光源,对Nd3+sup>:YVO4/sub>微片进行了增益开关实验,获得了可控制变重复频率(1 Hz~25 kHz)的调Q激光输出。输出脉冲激光的宽度为16 ns,输出的峰值功率在几W。从速率方程出发进行了增益开关理论研究,通过数值解,分析了输出激光特性:当泵浦电流高于产生单脉冲的电流时,增加泵浦电流将在一个泵浦脉宽中出现多个激光脉冲输出;增加泵浦脉宽,将在一个泵浦脉宽中出现多个激光脉冲输出,泵浦脉宽越大,子脉冲个数越多;当增加重复频率时,输出与泵浦激光重复频率完全一致的激光脉冲,但也将在一个泵浦脉宽中出现多个激光脉冲输出。  相似文献   

2.
LD抽运Nd:GdVO4的激光性能研究   总被引:2,自引:0,他引:2       下载免费PDF全文
利用LD端泵NdGdVO4晶体,实现了激光器的1 063 nm连续和调Q激光输出.在连续激光输出实验中,在泵浦功率为20.2 W时,得到最高的光-光转换效率为55.0%,斜效率为59.1%,此时输出功率为11.5 W;在泵浦功率为33.7 W时,得到16.7 W的最大激光输出.在调Q实验中,当重复频率为10 kHz时,获得脉宽6.5 ns,能量340 μJ,峰值功率52.3 kW.当重复频率为30 kHz时,获得脉宽14.5 ns,平均输出功率5.18 W,峰值功率11.9 kW.  相似文献   

3.
LD侧面泵浦电光调Q532nm脉冲激光器   总被引:1,自引:1,他引:0       下载免费PDF全文
沈兆国  白杨  宋东璠  白晋涛 《应用光学》2009,30(6):1036-1039
 为了实现高可靠、窄脉宽、高峰值功率激光输出,采用侧面泵浦技术和电光调Q技术,设计出一种激光二极管侧面泵浦电光调Q全固态绿光激光器。采用结构简单、紧凑的平-平腔设计,其端镜和输出镜均为平面镜,获得较稳定的侧面泵浦Nd∶YAG腔外倍频KTP脉冲绿光激光输出。当泵浦电流为120A,重复频率为600Hz时,获得脉冲绿光的最高输出平均功率为3.62W,1064nm到532nm的转换效率为15.3%,其脉宽为21ns,峰值功率为300kW, 单脉冲能量为6.01mJ。实验结果表明:该激光器稳定性可靠,输出激光脉宽较窄、峰值功率高。  相似文献   

4.
本文报道了一种台阶声光调Q外腔泵浦MgO:PPLN光参量振荡器的3.4 μm中红外脉冲串激光器.建立了基频台阶声光调Q理论模型,模拟了不同台阶调Q间隔时光子数密度随时间变化趋势,获得了台阶信号最优触发时间,确定了台阶声光调Q获得脉冲串激光输出的可能性.根据理论模拟设计台阶信号触发时间,并应用于台阶声光调Q外腔泵浦MgO:PPLN光参量振荡器的中红外脉冲串激光器实验中,在每个重复周期内声光Q开关分三次开启,获得了单脉冲包络含三个子脉冲的3.4 μm中红外脉冲串激光输出.脉冲包络内子脉冲间隔为5 μs,最窄脉宽为12.8 ns,脉冲包络重频为20 kHz,理论和是实验中均发现脉冲包络内子脉冲宽度逐渐增大.在最大平均输出功率为1.08 W时, 1064 nm基频光与3.4 μm参量光的光-光转换效率为10.05%,光束质量因子M2为2.01.  相似文献   

5.
新型电光陶瓷调Q光纤激光器   总被引:2,自引:2,他引:0  
报道了基于OptoCeramic(R)电光陶瓷材料的新型调Q光纤激光器.采用976 nm半导体激光器作为抽运源,电光陶瓷调制器作为Q开关,峰值吸收系数1200 Db/m的高掺杂镱纤作为增益介质构成环形腔激光器.增益光纤的高掺杂浓度使得激光器的腔长得到缩短,输出光脉冲的宽度得到压缩.通过调节电光元件的电压,控制材料的折射率,调节谐振腔的损耗,实现Q开关作用.实验中通过改变腔长、抽运功率和重复频率,研究了脉冲的输出特性.获得最窄脉宽104 ns,重复频率3~40 kHz连续可调的调Q脉冲输出.  相似文献   

6.
报道了一个低阈值宽调谐、被动调Q、单谐振掺MgO的周期性极化铌酸锂晶体(PPMgLN)光学参量振荡器。利用被动调Q的Nd:YVO4激光器作为泵浦源,采用外腔结构,在室温下,实现了PPMgLN晶体的准相位匹配光学参量振荡。光参量振荡的阈值仅为0.27W(单脉冲能量4.5μJ、脉宽35ns);在泵浦光为1.35W(脉冲能量8.2μJ、脉宽35ns),PPMgLN周期为31μm时,获得了161.9mW,3.202μm脉冲激光输出;同时获得了98.5mW的1.594μm信号光输出,总的光光转化效率达到19.3%。通过改变晶体的周期,实现了闲频光3.13~4.19μm,信号光1.43~1.65μm的宽带可调谐激光输出。  相似文献   

7.
LD连续泵浦Nd:YVO4声光调Q激光器   总被引:2,自引:0,他引:2       下载免费PDF全文
 利用半导体激光器(LD)连续单端泵浦Nd:YVO4晶体,实现了声光调Q输出1 064nm的短脉冲。分析并用实验验证了不同透过率输出耦合镜及不同重复频率条件下,输出调Q脉冲能量、脉冲宽度及平均输出功率的规律。在泵浦功率为20.7W,重复频率为50kHz时,获得了最大平均输出功率为5.72W的脉冲,光 光转换效率为28%,斜效率为32.4%;在重复频率为10kHz时,最大单脉冲能量为0.286mJ,脉宽为22ns,峰值功率为13kW。  相似文献   

8.
高功率DPSL声光调Q脉宽压窄的影响因素研究   总被引:1,自引:0,他引:1  
利用调Q速率方程,从工作物质的增益和谐振腔的损耗之间的内在关系出发,论述了谐振腔内多个可变参数对激光器输出脉冲宽度的影响。用实验给予了验证。在实验中,采用高效的光耦合泵浦腔,对35个20W连续激光二极管阵列侧面泵浦的声光调Q Nd∶YAG固体激光器进行了研究,激光工作物质的尺寸为Φ4mm×115mm,使用熔石英声光Q开关,在泵浦电流I=22.2A时,获得了重复频率10kHz,脉冲宽度45.8ns,平均功率112W的1064nm调Q激光脉冲输出。光-光转换效率为21.3%,电-光转换效率为8.5%。  相似文献   

9.
用脉冲激光二极管阵列(LDA)作为泵浦源、微柱透镜阵列和透镜导管作为耦合系统,以As+注入GaAs可饱和吸收片作为被动调Q锁模元件,实现了Nd∶YVO4激光器调Q锁模运转.调Q运转阶段,激光器每泵浦脉宽内输出一个调Q脉冲,调Q脉宽7ns.调Q锁模运转阶段,初始透过率60%的GaAs晶片对调Q包络内的锁模脉冲的调制深度达到95%以上,锁模脉冲重复频率991 MHz.研究了加在LDA上的电压、方波脉冲的脉宽和重复频率对调Q锁模脉冲特性的影响,并对实验结果进行了讨论.  相似文献   

10.
分别采用MOTORULA公司的硅基光电二极管探测器和JUDSON公司的InGaAs光电二极管探测器对泵浦光和信号光的脉宽进行了测量.研究了极化周期、工作温度以及抽运功率与周期极化掺镁铌酸锂光学参量振荡器输出的信号光脉冲宽度的作用关系.实验采用LD端面抽运的声光调Q Nd∶YVO4激光器作为抽运源,在晶体温度为30 ℃、极化周期为29.5 μm条件下,当抽运功率为1 008 mW时,获得了平均功率为238 mW的信号光输出,其光-光转换效率为23.6%,最窄脉冲宽度约为9.3 ns,相对抽运光脉宽被明显压窄.  相似文献   

11.
LD泵浦Nd:YAG激光器的连续激光输出和高重复率调Q   总被引:2,自引:0,他引:2  
用连续输出1W国产多量子阱激光二极管列阵(MQW-LDA)泵浦Nd:YAG固体激光器,连续激光输出最大功率为112mw,光-光效率为10.6%,斜效率为20%.实现了连续泵浦高重复频率(1kHz,4kHz,10kHz)调Q输出,最大峰值功率为355W,最大平均功率为43.7mw.  相似文献   

12.
Ce3+∶LiCaAlF6紫外激光器的研究   总被引:1,自引:1,他引:0  
曾峰  杜晨林  阮双琛 《光子学报》2005,34(8):1121-1123
报道了利用Nd∶YAG四倍频266 nm脉冲激光端面泵浦Ce∶LiCAF晶体,采用平凹谐振腔,输出296 nm波长紫外激光.当输出镜透过率为20%,入射泵浦能量为13.5 mJ时,获得最大输出激光脉冲能量为270 μJ,脉冲宽度为3.4 ns,输出激光峰值功率为79.4 kW,光-光转换效率为2%,斜效率为1.6%.  相似文献   

13.
非线性光纤光栅在禁带内对光脉冲压缩的机制   总被引:1,自引:0,他引:1  
刘军民  廖常俊 《光学学报》1996,16(3):93-298
研究了非线性光纤光栅在禁带内对光脉冲的压缩机制,结果表明这是一介储能-调出禁带的过程,入射脉冲首先在光纤光栅中激发能量密度波包,它是有限长光纤光栅中的准孤立波,其在光纤光栅输出端的能量损失形成输出脉冲,并决定了输出脉冲的脉宽和峰值功率。在脉冲压缩过程中,自振荡效应可以导致输出脉冲的分裂,利用这种效应可以提高脉冲压缩比。  相似文献   

14.
 为了实现窄脉宽、高峰值功率2.12 μm激光的稳定输出,设计了基于侧面泵浦Zig-Zag 板条产生1.06 μm基频光,进而泵浦KTP晶体通过II类相位匹配产生2.12 μm激光的光参量振荡实验。对外腔及内腔进行了实验研究,分别获得了1.53%和2.86%的电光转换效率。在20 Hz频率下内腔2.12 μm输出能量达到70 mJ以上,脉宽7 ns~9 ns。其中内腔实验中能量输出稳定度接近8%。  相似文献   

15.
综述了被动调Q铒玻璃激光器的发展概况,推导了被动调Q铒玻璃激光器输出脉冲能量、脉宽的解析表达式,数值模拟了腔内损耗与输出脉冲能量、脉宽及峰值功率的关系以及输出脉冲能量与输入抽运能量的关系.设计了一台LaMgAl11O19:Co2 被动调Q铒玻璃激光器,实验验证了数值模拟分析结果.结果表明,腔内损耗增加将导致输出脉冲能量下降,脉宽变大,从而峰值功率降低.输入能量低于12 J时,输出只有单脉冲,当输入能量大于12 J时,输出会出现双脉冲.在8 J的电输入下,获得了峰值功率50 kW,2.7 mJ的1.535 tm激光输出.最后讨论了提高单脉冲能量的方法.  相似文献   

16.
A passively Q-switched all solid-state Nd:LuVO4 1.06 μm laser was demonstrated by using Cr4+:YAG as saturable absorber. The characteristics of average output power, pulse width, repetition rate, pulse energy, and peak power were studied with different output couplings and initial transmission of saturable absorbers. When output coupling with the transmission of 20% was used, the shortest pulse width of 16 ns at the repetition rate of 12.5 kHz was obtained, which results in the pulse energy of 71 μJ and peak power of 4.43 kW with the initial transmission of 70% of Cr4+:YAG crystal.  相似文献   

17.
A diode-pumped acousto-optically Q-switched intracavity frequency-doubled Nd:GdVO4/KTP green laser formed with a flat–flat resonator was demonstrated. 3.05 W of average green output power at pulse repetition frequency (PRF) of 40 kHz was obtained with an optical conversion efficiency of 18.4%, the effective intracavity frequency-doubling efficiency was 57%. At the incident pump power of 15 W, the shortest laser pulse occurred at PRF of 25 kHz with FWHM width of 14 ns, yielding the highest peak power of 7.44 kW; while the largest pulse energy of 0.14 mJ was achieved at PRF of 15 kHz.  相似文献   

18.
We develop an injection-seeded single-frequency neodymium-doped yttrium aluminum garnet (Nd:YAG) laser with 500 Hz repetition rate and high peak power. The laser construction is designed as seed injection and master oscillator power amplifier (MOPA) including single-frequency master oscillator, extra-cavity frequency doubling crystal, and round-trip power amplifier. The master oscillator can emit 1,064 nm laser of 8.4 mJ with 6.8 ns pulse width at the pump energy equal to 23 mJ. A green laser energy of 1.1 mJ is obtained by setting the proper temperature of the LBO crystal. The pulse energy of 1,064 nm laser decreases to 6.5 mJ after passing through the LBO crystal and rises to 25.3 mJ after a round-trip power amplifier corresponding to the extraction efficiency of 29%. The final output pulse width is 6.5 ns, representing a peak power of 3.9 MW. The 1,064 nm laser beam quality factor M2 of the master oscillator and the amplified one are 1.3 and 1.5, respectively. The laser will be used to generate mid-infrared where the 532 nm laser with narrow pulse width is to pump sheet optical parametric oscillator (OPO) and the 1,064 nm laser with high peak power to pump the OPO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号