首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cobalt(II), nickel(II), and copper(II) (1, 2, and 3) complexes of the dianionic form of the bis(phenolate) ligand N,N-bis(3,4-dimethyl-2-hydroxybenzyl)-N',N'-dimethylethylenediamine (H2L) have been synthesized by electrochemical oxidation of the appropriate metal in an acetonitrile solution of the ligand. When copper is used as the anode, the addition of 1,10-phenanthroline to the electrolytic phase gave rise to a different compound [CuL]2.2CH3CN (4). The compounds [CoL]2.2CH3CN (1), [Ni2L2(H2O)].H2O (2), [CuL]2.3H2O (3), and [CuL]2.2CH3CN (4) were characterized by microanalysis, IR, electronic spectroscopy, FAB mass spectrometry, magnetic measurements and by single-crystal X-ray diffraction. The crystal structures show that the complexes have a dinuclear structure. In compounds 1, 3, and 4, two metal ions are coordinated by the two amine nitrogens and the two phenol oxygen atoms of a deprotonated pendant phenol ligand, with one phenolic oxygen atom from ligand acting as a bridge. In compounds 1 and 3, each metal center has a geometry that is closest to trigonal bipyramidal. Magnetic susceptibility data for both compounds show an antiferromagnetic coupling with 2J = -15 cm(-1) for the cobalt(II) complex and a strong antiferromagnetic coupling with 2J = -654 cm(-1) for the copper(II) complex. However, in 4 the geometry around the metal is closer to square pyramidal and the compound shows a lower antiferromagnetic coupling (2J = -90 cm(-1)) than in 3. The nickel atoms in the dimeric compound 2 are hexacoordinate. The NiN2O4 chromophore has a highly distorted octahedral geometry. In this structure, a dianionic ligand binds to one nickel through the two amine nitrogen atoms and the two oxygen atoms and to an adjacent nickel via one of these oxygen atoms. The nickel atoms are linked through a triple oxygen bridge involving two phenolic oxygens, each from a different ligand, and an oxygen atom from a water molecule. The two nickel ions in 2 are ferromagnetically coupled with 2J = 19.8 cm(-1).  相似文献   

2.
A new polynucleating oxime-containing Schiff base ligand, 2-hydroxyimino- N'-[1-(2-pyridyl)ethylidene]propanohydrazone (H pop), has been synthesized and fully characterized. pH potentiometric, electrospray ionization mass spectrometric, and spectrophotometric studies of complex formation in H 2O/DMSO solution confirmed the preference for polynuclear complexes with 3d metal ions. Single-crystal X-ray diffraction analyses of [Ni 4( pop) 4(HCOO) 4].7H 2O ( 1), [Cu 4( pop-H) 4(HCOOH) 4].H 2O ( 2), and [Cu 4( pop-H) 4(H 2O) 4].9H 2O ( 3) indicated the presence of a [2 x 2] molecular grid structure in all three compounds but distinct configurations of the cores: a head-to-tail ligand arrangement with overall S 4 symmetry of the grid in the Cu (2+) complexes as opposed to a head-to-head ligand arrangement with (noncrystallographic) C 2 grid symmetry for the Ni (2+) complex. A cryomagnetic study of 3 revealed intramolecular ferromagnetic exchange between copper ions in the grid, while in 1, antiferromagnetic interactions between the metal ions were observed.  相似文献   

3.
Three new copper(ii) complexes of formula [Cu(tppz)(NCO)(2)].0.4H(2)O (1), [Cu(2)(tppz)Br(4)](2) and [Cu(3)(tppz)(C(5)O(5))(3)(H(2)O)(3)].7H(2)O (3)[tppz = 2,3,5,6-tetrakis(2-pyridyl)pyrazine; C(5)O(5)(2-) = croconate, dianion of 4,5-dihydroxycyclopent-4-ene-1,2,3-trione] have been synthesised and structurally characterized by X-ray diffraction methods. The structure of complex is made up of neutral [Cu(tppz)(NCO)(2)] mononuclear units and uncoordinated water molecules. The mononuclear units are grouped by pairs to give a rather short copper-copper distance of 3.9244(4) angstroms. The structure of complex 1 consists of neutral tppz-bridged [Cu(2)(tppz)Br(4)] dinuclear units, the copper-copper separation across tppz being 6.6198(1) angstroms. The dinuclear units are further connected through weak, double out-of-plane Cu-Br...Cu bridges [Br(1)...Cu(1a) 4.0028(17) angstroms] creating tetranuclear entities, the copper-copper separation through this interaction being 4.3299(21) angstroms. The structure of complex 3 is built of neutral [Cu(3)(tppz)(C(5)O(5))(3)(H(2)O)(3)] trinuclear units and uncoordinated water molecules. Tppz and one of the croconate groups act as bridging ligands, the former exhibiting the bis-terdentate coordination mode and the latter adopting an unusual asymmetrical bis-bidentate bridging mode through three adjacent oxygen atoms. The other two croconate groups exhibit the bidentate coordination mode. The intramolecular copper-copper separations are 6.5417(9)(across tppz) and 4.3234(9) angstroms (through bis-bidentate croconato). The magnetic properties of 2 and 3 have been investigated in the temperature range 1.9-300 K. The magnetic behaviour of complex 2 is that of an antiferromagnetically coupled copper(II) dimer (J = -40.9 cm(-1), the Hamiltonian being H = -JS(A).S(B)). In the case of compound , the chi(M) T vs. T plot is typical of an overall antiferromagnetic coupling with a low-lying spin doublet being fully populated at T < 10 K. The values of the intramolecular antiferromagnetic interactions in 3 are -19.9 (across tppz) and -32.9 cm(-1)(through bridging croconato). Density functional type calculations were performed on model dinuclear fragments of 3 in order to analyze the efficiency of the exchange pathways involved and also to substantiate the coupling parameters.  相似文献   

4.
Bis(hexafluoroacetylacetonato(hfac))manganese(II) coordinated with di(4-pyridyl)phenylcarbene, Mn(II)(hfac)(2)[di(4-pyridyl)phenylcarbene] (1a) and its copper analogue Cu(II)(hfac)(2)[di(4-pyridyl)phenylcarbene] (2a) have attracted great interest from the viewpoint of photoinduced magnetism. The complexes 1a and 2a are regarded as the new d-pi-p conjugated systems containing transition metal ion and carbene as spin sources. The magnetic measurements demonstrated antiferromagnetic and ferromagnetic effective exchange interactions for 1a and 2a, respectively. Here, we have performed UHF and UHF plus DFT hybrid calculations (UB3LYP) to elucidate the nature of the through-bond effective exchange interaction between Mn(II) (or Cu(II)) ion and triplet carbene sites in 1a (or 2a) and their model complexes. The natural orbital analysis of the UHF and UB3LYP solutions and CASCI calculations for the simplest models of 1a and 2a are performed to elucidate relative contributions of spin polarization (SP) and spin delocalization (SD) (or superexchange (SE)) interactions for determination of the sign of J(ab) values. Mn(II) carbene complex 1a shows an antiferromagnetic interaction because of the pi-type antiferromagnetic SE effect and the pi-type SP effect, while the positive J(ab) value for Cu(II) carbene complex 2a can be explained by the fact that ferromagnetic SE and SP interactions due to orbital orthogonality are more effective than the sigma-type antiferromagnetic SE interaction. The ligand coordination effects of both 4-pyridylcarbene and hfac play crucial roles for determination of the J(ab) values, but the ligand coordination effect of hfac is more important for the active control of charge or spin density distributions than that of 4-pyridylcarbene. The spin alignment mechanisms of 1a and 2a are indeed consistent with SE plus SP rule, which is confirmed with the shape and symmetry of natural orbitals, together with charge and spin density distributions.  相似文献   

5.
The synthesis and characterization (X-ray crystallography, UV/vis spectroscopy, electrochemistry, ESI-MS, and (1)H, (13)C, and (59)Co NMR) of the complexes [Co(L)(O(2)CO)]ClO(4)xH(2)O (L = tpa (tpa = tris(2-pyridylmethyl)amine) (x = 1), pmea (pmea = bis((2-pyridyl)methyl)-2-((2-pyridyl)ethyl)amine) (x = 0), pmap (pmap = bis(2-(2-pyridyl)ethyl)(2-pyridylmethyl)amine) (x = 0), tepa (tepa = tris(2-(2-pyridyl)ethyl)amine) (x = 0)) which contain tripodal tetradentate pyridyl ligands and chelated carbonate ligands are reported. The complexes display different colors in both the solid state and solution, which can be rationalized in terms of the different ligand fields exerted by the tripodal ligands. Electrochemical data show that [Co(tepa)(O(2)CO)](+) is the easiest of the four complexes to reduce, and the variation in E(red.) values across the series of complexes can also be explained in terms of the different ligand fields exerted by the tripodal ligands, as can the (59)Co NMR data which show a chemical shift range of over 2000 ppm for the four complexes. [Co(pmea)(O(2)CO)](+) is fluxional in aqueous solution, and VT NMR spectroscopy ((1)H and (13)C) in DMF-d(7) (DMF = dimethylformamide) over the temperature range -25.0 to 75.0 degrees C are consistent with inversion of the unique six-membered chelate ring. This process shows a substantial activation barrier (DeltaG(#) = 58 kJ mol(-1)). The crystal structures of [Co(tpa)(O(2)CO)]ClO(4)xH(2)O, [Co(pmea)(O(2)CO)]ClO(4).3H(2)O, [Co(pmap)(O(2)CO)]ClO(4), and [Co(tepa)(O(2)CO)]ClO(4) are reported, and the complexes containing the asymmetric tripodal ligands pmea and pmap both crystallize as the 6-isomer. The carbonate complexes all show remarkable stability in 6 M HCl solution, with [Co(pmap)(O(2)CO)](+) showing essentially no change in its UV/vis spectrum over 4 h in this medium. The chelated bicarbonate complexes [Co(pmea)(O(2)COH)]ZnCl(4), [Co(pmap)(O(2)COH)][Co(pmap)(O(2)CO)](ClO(4))(3), [Co(pmap)(O(2)COH)]ZnCl(4)xH(2)O, and [Co(pmap(O(2)COH)]ZnBr(4)x2H(2)O can be isolated from acidic aqueous solution, and the crystal structure of [Co(pmap)(O(2)COH)]ZnCl(4)x3H(2)O is reported. The stability of the carbonate complexes in acid is explained by analysis of the crystallographic data for these, and other slow to hydrolyze chelated carbonate complexes, which show that the endo (coordinated) oxygen atoms are significantly hindered by atoms on the ancillary ligands, in contrast to complexes such as [Co(L)(O(2)CO)](+) (L = (NH(3))(4), (en)(2), tren, and nta), which undergo rapid acid hydrolysis and which show no such steric hindrance.  相似文献   

6.
The reaction between Hmbpymca ligand (prepared in situ from the hydrolysis of 5-methyl-4-cyano-bispyrimidine with NaOH and further neutralization with 2 M HCl) and Mn(ClO(4))(2)·4H(2)O in 1:1 molar ratio afforded the triangulo-trimanganese(II) complex [Mn(3)(bpymca)(3)(H(2)O)(6)]Cl(3)·6H(2)O 1. The chloride anions in this complex come from the HCl used in the neutralization process. The molecular structure of 1 consists of cationic molecular triangles [Mn(3)(μ-mbpymca)(3)(H(2)O)(6)](3+) with C(3) symmetry, chloride anions and crystallization water molecules, all of them involved in an extensive network of hydrogen bonds, leading to a chiral network. Within the [Mn(3)(μ-mbpymca)(3)(H(2)O)(6)](3+) cations, seven-coordinated Mn(II) ions are bridged by both oxygen atoms of the carboxylate groups and exhibit a MnO(5)N(2) compressed pentagonal bipyramidal coordination environment. The temperature dependence of the magnetic susceptibility shows the presence of weak antiferromagnetic interactions between Mn(II) ions mediated by the carboxylate group of the mbpymca ligand and the existence of a 3D antiferromagnetic ordering below 4 K, which has its origin in the AF inter-trimer exchange interactions mediated by the strong hydrogen bonds present in the crystal of 1. The experimental magnetic susceptibility data above 7 K could be satisfactorily fitted to the theoretical analytical expression derived from the spin Hamiltonian H = -J(S(1)S(2) + S(1)S(3) + S(2)S(3)) with J = -0.782(3) cm(-1) and g = 2.092(3). The model predicts a degenerate ground state with an S = 1/2, which is typical of triangular trimetallic spin frustrated systems containing metal with non-integer spins. DFT calculations were performed on the molecular structure as found in the solid state to support the experimental J value and the Mn-O(carb)-Mn as the primarily exchange pathway.  相似文献   

7.
Two sterically hindered tris-pyridyl methane ligands, tris(6-methyl-2-pyridyl)methane (L1) and bis(6-methyl-2-pyridyl)pyridylmethane (L2), are newly synthesized. Under aerobic conditions, Ln (n = 1 or 2) reacts with CuX2 (X = Cl or Br), oxygenated at the methine position to LnOH or LnOMe. The former alcoholate ligand creates trinuclear Cu(II) complexes [Cu3(X)(LnO)3](PF6)2 [(X, n) = (Br, 1) 1, (C1, 1) 2, (Br, 2) 3, or (C1, 2) 4] in which the alkoxide oxygen atoms bridge copper centers. The crystal structures of 1-4 are presented along with their magnetic susceptibility data. The weak antiferromagnetic coupling between the Cu(II) centers in this trinuclear arrangement is due to weak interaction of the magnetic orbitals (dz2) which are oriented along three alternate sides in a hexagon of the Cu3O3 core in 1-4. Under anaerobic conditions, L1 reacts with CuBr2 to form a square pyramidal complex [CuL1Br2] (9) with the ligand facially capping. [Cu(Br)2(L1OMe)] (10) was obtained after the suspension of 9 in MeOH was stirred under air for 48 h. In the presence of cyclohexene, 9 is converted to [Cu(Br)(L1)]m (m = 1 or 2) 5 quantitatively to give trans- 1,2-dibromocyclohexane, indicating that Br2 is generated during the reaction. The FAB MS spectrum of [18O]-1 prepared by the reaction of L1 with CuBr2 under 18O2 shows that the ligand of [18O]-1 is L1(18O-.) L1(18OH), L1OCD3, and bis(6-methyl-2-pyridyl) ketone were obtained from reaction of L1 with CuBr2 in CD3OD under 18O2. These results indicate that the origins of the O atom in L1OH and L1OMe are O2 and MeOH, respectively. On the basis of these results, a mechanism of the oxygenation of L1 in the present system will be proposed.  相似文献   

8.
Seven new polynuclear copper(II) complexes of formula [Cu(mu-pymca)2] (1) (pymca(-) = pyrimidine-2-carboxylato), [Cu(mu-pymca)Br] (2), [Cu(mu-pymca)Cl] (3), [Cu(mu-pymca)(SCN)(H2O)] x 4 H2O (4), [Cu(mu-pymca)N3] (5), [Cu2(mu1,5-dca)2(pymca)2] (6) (dca = dicyanamide), and K{[mu-Au(CN)2]2[(Cu(NH3)2)2(mu-pymca)]}[Au(CN)2]2 (7) have been synthesized by reactions of K-pymca with copper(II) ions in the presence of different counteranions. Compound 1 is a linear neutral chain with a carboxylato bridging ligand in a syn-anti coordination mode, whereas complexes 2 and 3 consist of cationic linear chains with cis and trans bis(chelating) pymca bridging ligands. Complex 4 adopts a helical pymca-bridged chain structure. In complex 5, zigzag pymca-bridged chains are connected by double end-on azide bridging ligands to afford a unique honeycomb layer structure. Complex 6 is a centrosymmetric dinuclear system with double mu 1,5-dicyanamide bridging ligands and pymca end-cap ligands. Complex 7 is made of pymca-bridged dinuclear [Cu(NH3)2(mu-pymca)Cu(NH3)2](3+) units connected by [Au(CN)2](-) anions to four other dinuclear units, giving rise to cationic (4,4) rectangular nets, which are linked by aurophilic interactions to afford a singular 3D network. Variable-temperature magnetic susceptibility measurements show that complex 1 exhibits a very weak antiferromagnetic coupling through the syn-anti (equatorial-axial) carboxylate bridge (J = -0.57 cm(-1)), whereas complexes 2-4 and 7 exhibit weak to strong antiferromagnetic couplings through the bis(chelating) pymca bridging ligand J = -17.5-276.1 cm(-1)). Quantum Monte Carlo methods have been used to analyze the experimental magnetic data for 5, leading to an antiferromagnetic coupling (J = -34 cm(-1)) through the pymca ligand and to a ferromagnetic coupling (J = 71 cm(-1)) through the azide bridging ligands. Complex 6 exhibits a very weak antiferromagnetic coupling through the dicyanamide bridging ligands (J = -5.1 cm(-1)). The magnitudes of the magnetic couplings in complexes 2-5 have been explained on the basis of the overlapping between magnetic orbitals and DFT theoretical calculations.  相似文献   

9.
Using a (2-pyridyl)ethylamine-appended carboxylate ligand a new cluster [Cu(II)(7)(L)(4)(μ(3)-OH)(2)(H(2)O)(2)(DMF)(2)][ClO(4)](4)·4H(2)O (1) [L(2-): N-{CH(2)CH(2)(2-pyridyl)}(CH(2)CH(2)CO(2))(2)] is synthesized, as a result of 'coordination-driven self-assembly'. The structure of 1 is unique and consists of a centrosymmetric carboxylato- and hydroxo-bridged heptanuclear copper(II) cation, with body-centred anti-prismatic topology. The four crystallographically independent copper(II) centres differ markedly in their coordination geometry. In addition to establishing cluster authenticity, the structural analysis of 1 discloses two notable features. The existence of {Cu(II)(3)(μ(3)-OH)}(5+) core and H-bonded metal-coordinated carboxylate and water unit, with water acting as a proton donor. Both of these features have biological implications. Magnetic measurements reveal that in this unprecedented cluster the net magnetic-exchange is antiferromagnetic. The different types of magnetic-exchange coupling constants (J values) considered for magnetic data analysis appear to adopt a variety of values depending on the specific geometric parameters associated with two interacting copper(II) centres. Notably, for 1 a good agreement between the J values obtained from DFT calculations at the B3LYP level of theory and from the experimental data is achieved.  相似文献   

10.
Copper(I) and copper(II) complexes possessing a series of related ligands with pyridyl-containing donors have been investigated. The ligands are tris(2-pyridylmethyl)amine (tmpa), bis[(2-pyridyl)methyl]-2-(2-pyridyl)ethylamine (pmea), bis[2-(2-pyridyl)ethyl]-(2-pyridyl)methylamine (pmap), and tris[2-(2-pyridyl)ethyl]amine (tepa). The crystal structures of the protonated ligand H(tepa)ClO(4), the copper(I) complexes [Cu(pmea)]PF(6) (1b-PF(6)), [Cu(pmap)]PF(6) (1c-PF(6)), and copper(II) complexes [Cu(pmea)Cl]ClO(4).H(2)O (2b-ClO(4).H(2)O), [Cu(pmap)Cl]ClO(4).H(2)O (2c-ClO(4).H(2)O), [Cu(pmap)Cl]ClO(4) (2c-ClO(4)), and [Cu(pmea)F](2)(PF(6))(2) (3b-PF(6)) were determined. Crystal data: H(tepa)ClO(4), formula C(21)H(25)ClN(4)O(4), triclinic space group P1, Z = 2, a = 10.386(2) A, b = 10.723(2) A, c = 11.663(2) A, alpha = 108.77(3) degrees, beta = 113.81(3) degrees, gamma = 90.39(3) degrees; 1b-PF(6), formula C(19)H(20)CuF(6)N(4)P, orthorhombic space group Pbca, Z = 8, a = 14.413(3) A, b = 16.043(3) A, c = 18.288(4) A, alpha = beta = gamma = 90 degrees; (1c-PF(6)), formula C(20)H(22)CuF(6)N(4)P, orthorhombic space group Pbca, Z = 8, a = 13.306(3) A, b = 16.936(3) A, c = 19.163(4) A, alpha = beta = gamma = 90 degrees; 2b-ClO(4).H(2)O, formula C(19)H(22)Cl(2)CuN(4)O(5), triclinic space group P1, Z = 4, a = 11.967(2) A, b = 12.445(3) A, c = 15.668(3) A, alpha = 84.65(3) degrees, beta = 68.57(3) degrees, gamma = 87.33(3) degrees; 2c-ClO(4).H(2)O, formula C(20)H(24)Cl(2)CuN(4)O(5), monoclinic space group P2(1)/c, Z = 4, a = 11.2927(5) A, b = 13.2389(4) A, c = 15.0939(8) A, alpha = gamma = 90 degrees, beta = 97.397(2) degrees; 2c-ClO(4), formula C(20)H(22)Cl(2)CuN(4)O(4), monoclinic space group P2(1)/c, Z = 4, a = 8.7682(4) A, b = 18.4968(10) A, c = 13.2575(8) A, alpha = gamma = 90 degrees, beta = 94.219(4) degrees; 3b-PF(6), formula [C(19)H(20)CuF(7)N(4)P](2), monoclinic space group P2(1)/n, Z = 2, a = 11.620(5) A, b = 12.752(5) A, c = 15.424(6) A, alpha = gamma = 90 degrees, beta = 109.56(3) degrees. The oxidation of the copper(I) complexes with dioxygen was studied. [Cu(tmpa)(CH(3)CN)](+) (1a) reacts with dioxygen to form a dinuclear peroxo complex that is stable at low temperatures. In contrast, only a very labile peroxo complex was observed spectroscopically when 1b was reacted with dioxygen at low temperatures using stopped-flow kinetic techniques. No dioxygen adduct was detected spectroscopically during the oxidation of 1c, and 1d was found to be unreactive toward dioxygen. Reaction of dioxygen with 1a-PF(6), 1b-PF(6), and 1c-PF(6) at ambient temperatures leads to fluoride-bridged dinuclear copper(II) complexes as products. All copper(II) complexes were characterized by UV-vis, EPR, and electrochemical measurements. The results manifest the dramatic effects of ligand variations and particularly chelate ring size on structure and reactivity.  相似文献   

11.
Reaction of Cu(II), [gamma-SiW10O36]8-, and N3- affords three azido polyoxotungstate complexes. Two of them have been characterized by single-crystal X-ray diffraction. Complex KNaCs10[{gamma-SiW10O36Cu2(H2O)(N3)2}2].26H2O (1) is obtained as crystals in few hours after addition of CsCl. This linear tetranuclear Cu(II) complex consists in two [gamma-SiW10O36Cu2(H2O)(N3)2]6- units connected through two W=O bridges. When the filtrate is left to stand for one night, a new complex is obtained. From both elemental analysis and IR spectroscopy, it has been postulated that this compound could be formulated K(1.5)Cs(5.5)[SiW10O37Cu2(H2O)2(N3)].14 H2O (1 a), showing the loss of one azido ligand per polyoxometalate unit. Finally, when no cesium salt is added to the reaction medium, the nonanuclear complex K12Na7[{SiW8O31Cu3(OH)(H2O)2(N3)}3(N3)].24 H2O (2) is obtained after three days. Compound 2 crystallizes in the R3c space group and consists in three {Cu3} units related by a C3 axis passing through the exceptional mu-1,1,1,3,3,3-azido bridging ligand. Each trinuclear Cu(II) unit is embedded in the [gamma-SiW8O31]10- ligand, an unprecedented tetravacant polyoxometalate, showing that partial decomposition of the [gamma-SiW10O36]8- precursor occurs with time in such experimental conditions. Magnetically, complex 1 behaves as two isolated {Cu2(mu(1,1)-N3)2} pairs in which the metal centers are strongly ferromagnetically coupled (J = +224 cm(-1), g = 2.20), the coupling through the W=O bridges being negligible. The magnetic behavior of complex 2 has also been studied. Relatively weak ferromagnetic couplings (J1 = +1.0 cm(-1), J2 = +20.0 cm(-1), g=2.17) have been found inside the {Cu3} units, while the intertrimeric magnetic interactions occurring through the hexadentate azido ligand have been found to be antiferromagnetic (J3 = -5.4 cm(-1)) and ferromagnetic (J4 = +1.3 cm(-1)) with respect to the end-to-end and end-on azido-bridged Cu(II) pairs, respectively.  相似文献   

12.
Reactions between CuCl2 and K2tcpd (tcpd2- = [C10N6]2- = (C[C(CN)2]3)2-) in the presence of neutral co-ligands (bpym = 2,2'-bipyrimidine, and tn = 1,3-diaminopropane) in aqueous solution yield the new compounds [Cu2(bpym)(tcpd)2(H2O)4] x 2H2O (1), [Cu(tn)(tcpd)] (2), and [Cu(tn)2(tcpd)] x H2O (3), which are characterized by X-ray crystallography and magnetic measurements. Compound 1 displays a one-dimensional structure in which the bpym ligand, acting with a bis-chelating coordination mode, leads to [Cu2(bpym)]4+ dinuclear units which are connected by two mu2-tcpd2- bridging ligands. Compound 2 consists of a three-dimensional structure generated by [Cu(tn)]2+ units connected by a mu4-tcpd2- ligand. The structure of 3 is made up of centrosymmetric planar [Cu(tn)]2+ units connected by a mu2-tcpd2- ligand leading to infinite zigzag chains. In compounds 1 and 3, the bridging coordination mode of the tcpd2- unit involves only two nitrogen atoms of one C(CN)2 wing, while in 2, this ligand acts via four nitrogen atoms of two C(CN)2 wings. Despite this difference, the structural features of the tcpd2- units in 1-3 are essentially similar. Magnetic measurements for compound 1 exhibit a maximum in the chi(m) vs T plot (at approximately 150 K) which is characteristic of strong antiferromagnetic exchange interactions between the Cu(II) metal ions dominated by the magnetic exchange through the bis-chelating bpym. The fit of the magnetic data to a dimer model gives J and g values of -90.0 cm(-1) and 2.12, respectively. For compounds 2 and 3 the thermal variations of the magnetic susceptibility show weak antiferromagnetic interactions between the Cu(II) metal ions that can be well reproduced with an antiferromagnetic regular S = 1/2 chain model that gives J values of -0.07(2) and -0.18(1) cm(-1) with g values of 2.12(1) and 2.13(1) for compounds 2 and 3, respectively (the Hamiltonian is written in all the cases as H = -2JS(a)S(b)).  相似文献   

13.
The reaction of copper(II) perchlorate with the macrocyclic ligand [22]py4pz in the presence of base leads to formation of a dinuclear complex [Cu(2)([22]py4pz)(mu-OH)](ClO(4))(3)xH(2)O, in which two copper ions are bridged by a single mu-hydroxo bridge. Each copper ion is further surrounded by four nitrogen atoms of the ligand. The mu-hydroxo bridge mediates a strong antiferromagnetic coupling (2J = -691(35) cm(-1)) between the metal centers, leading to relatively sharp and well-resolved resonances in the (1)H NMR spectrum of the complex in solution. We herein report the crystal structure, the magnetic properties, and the full assignment of the hyperfine-shifted resonances in the NMR spectrum of the complex, as well as the determination of the exchange coupling constant in solution through temperature-dependent NMR studies.  相似文献   

14.
Two isomorphous Co(II) and Ni(II) coordination polymers with azide and the 4-(4-pyridyl)benzoic acid N-oxide ligand (4,4-Hopybz) were synthesized, and structurally and magnetically characterized. They are formulated as [M(4,4-opybz)(N(3))(H(2)O)](n) (M = Co, 1 and Ni, 2). The compounds consist of 2D coordination networks, in which 1D coordination chains with (μ-N(3))(μ-COO) bridges are interlinked by the 4,4-opybz spacers, and the structure also features intra- and interchain O-HO hydrogen-bonding bridges between metal ions. Both compounds exhibit ferromagnetic interactions through the intrachain (μ-N(3))(μ-COO)(O-HO) bridges and antiferromagnetic interactions through the interchain O-HO bridges. The ferromagnetic chains are antiferromagnetically ordered, and the antiferromagnetic phases exhibit field-induced metamagnetic transition. It is found that 1 displays slow relaxation of magnetization, typical of single-chain magnets, while 2 does not. The difference emphasizes the great importance of large magnetic anisotropy for single-chain-magnet dynamics.  相似文献   

15.
Copper(II) azide complexes of three tridentate ligands namely 2,6-(3,5-dimethylpyrazol-1-ylmethyl)pyridine (L), 2,6-(pyrazol-1-ylmethyl)pyridine (L'), and dipropylenetriamine (dpt) yield three kinds of complexes with different azide-binding modes. The ligand L forms two end-on-end (mu-1,3) diazido-bridged binuclear complexes, [CuL(mu-N(3))](2)(ClO(4))(2) (1) and [CuL(mu-N(3))(ClO(4))](2).2CH(3)CN (2), and L' forms a perchlorato-bridged quasi-one-dimensional chain complex, [CuL'(N(3))(ClO(4))](n)() (3) with monodentate azide coordination. The ligation of dipropylenetriamine (dpt) gives a end-on (mu-1,1) diazido-bridged binuclear copper complex [Cu(dpt)(mu-N(3))](2)(ClO(4))(2) (4). The crystal and molecular structures of these complexes have been solved. Variable-temperature EPR results of 1 and 2 are identical and indicate the presence of both ferromagnetic and antiferromagnetic interactions within the dimer, the former dominating at low temperatures and the latter at high temperatures. The unusual temperature-dependent magnetic moment and EPR spectra of this dimer reveal the presence of temperature-dependent population of two triplet states, one being caused by antiferromagnetic and the other by ferromagnetic interaction, the former transforming to the latter on cooling. While the interaction of ground spin doublets of the two metal centers gives rise to a ferromagnetic coupling of J(g) = 90.73 cm(-1), the other coupling of J(e) = -185.64 cm(-1) is suggested to be caused by the interaction between an electron in one metal center and an electron from the azide of the other monomer by excitation of a d-electron to the empty ligand orbital. The ferromagnetic state is energetically favored by 104.39 cm(-1). Compound 3 exhibits axial spectra at room temperature and 77 K, and variable-temperature magnetic susceptibility data indicate that the copper centers form a weakly antiferromagnetic one-dimensional chain with J = -0.11 cm(-1). In the case of 4, the unique presence of two nonidentical dimeric units with different bond lengths and bond angles within the unit cell as inferred by crystal structure is proved by single-crystal EPR spectroscopy.  相似文献   

16.
Two polymeric malonato-bridged manganese(II) complexes of formula [Mn(mal)(H(2)O)(2)](n)() (1) and [Mn(2)(mal)(2)(4,4'-bipy)(H(2)O)(2)](n)() (2) have been synthesized and characterized (mal = malonate dianion; 4,4'-bipy = 4,4'-bipyridine). The crystal structure of complex 1 was already known. Complex 2 crystallizes in monoclinic space group P2(1)/n, Z = 2, with unit cell parameters of a = 7.2974(10) A, b = 18.7715(10) A, c = 7.514(3) A, and beta = 91.743(12) degrees. The structure determination reveals that the complex [Mn(2)(mal)(2)(4,4'-bipy)(H(2)O)(2)](n)() (2) is a 3D network being composed of Mn-malonate sheets which are pillared by bidentate 4,4'-bipy spacer forming small voids. The Mn-Mn distances through Mn-mu-(O3-C8-O4)-Mn, Mn-mu(O1-C6-O2)-Mn, and Mn-mu-4,4'-bipy-Mn bridges are 5.561, 5.410, and 11.723 A, respectively. The magnetic behaviors of complexes 1 and 2 in the temperature range 300-2 K are very close, corresponding to a weak antiferromagnetic coupling. The magnetic pathways of complex 1 are through two Mn-O-C-O-Mn with anti-anti conformation and two Mn-O-C-O-Mn with syn-anti conformations and in complex 2 through all Mn-O-C-O-Mn with syn-anti conformations. Both syn-anti and anti-anti conformations create weak antiferromagnetic coupling, and the susceptibility data are fitted by the expansion series of Lines and the Curély formula for an S = 5/2 antiferromagnetic quadratic layer, based on the exchange Hamiltonian H = -Sigma(nn)()JS(i)()S(j)(). The best fit is given by the superexchange parameters J = -0.32 cm(-)(1) and g = 2.00 for complex 1 and J = -0.14 cm(-)(1), J(inter) = -0.031 cm(-)(1), and g = 2.00 for complex 2. Finally, in both the complexes there is a magnetic pathway Mn-O-C-C-C-O-Mn, and this pathway through the three carbon atoms of the malonato-bridging ligand could be considered negligible.  相似文献   

17.
A new one-dimensional polynuclear copper(II) complex [Cu(2)(mu(1,3)-SCN)(2)(mu'(1,3)-SCN)(2)(MPyO)(2)](n)(where MPyO = 4-methylpyridine N-oxide) has been synthesized and its crystal structure determined by X-ray crystallography. In the complex there exist two kinds of bridging coordination modes, namely, mu(1,3)-SCN(-) equatorial-equatorial (EE) bridging ligand and micro'(1,3)-SCN(-) equatorial-axial (EA) bridging ligand. Two micro(1,3)-SCN(-) EE bridging ligands coordinate two copper(II) ions in a binuclear unit, and the S atoms from the micro'(1,3)-SCN(-) EA bridging ligands as axial coordinated atoms link the binuclear units into one-dimensional chains. The ESR spectra have been investigated, and variable temperature (4-300 K) magnetic measurements were analyzed using a binuclear Cu(ii) magnetic interaction formula and indicate the existence of strong antiferromagnetic coupling with 2J=- 216.00 cm(-1) between bridged copper(II) ions. Density functional calculations have been carried out on this binuclear unit, yielding a similar singlet-triplet splitting. The mechanism of strong antiferromangetic interaction is revealed according to the calculations.  相似文献   

18.
A pyrazole based ditopic ligand (PzOAP), prepared by the reaction between 5-methylpyrazole-3-carbohydrazide and methyl ester of imino picolinic acid, reacts with Cu(NO3)2.6H2O to form a self-assembled, ferromagnetically coupled, alkoxide bridged tetranuclear homoleptic Cu(II) square grid-complex [Cu4(PzOAP)4(NO3)2] (NO3)2.4H2O (1) with a central Cu4[micro-O4] core, involving four ligand molecules. In the Cu4[micro-O4] core, out of four copper centers, two copper centers are penta-coordinated and the remaining two are hexa-coordinated. In each case of hexa-coordination, the sixth position is occupied by the nitrate ion. The complex 1 has been characterized structurally and magnetically. Although Cu-O-Cu bridge angles are too large (138-141 degrees) and Cu-Cu distances are short (4.043-4.131 A), suitable for propagation of expected antiferromagnetic exchange interactions within the grid, yet intramolecular ferromagnetic exchange (J = 5.38 cm(-1)) is present with S = 4/2 magnetic ground state. This ferromagnetic interaction is quite obvious from the bridging connections (d(x2-y2)) lying almost orthogonally between the metal centers. The exchange pathways parameters have been evaluated from density functional calculations.  相似文献   

19.
The ditopic ligand PyPzOAPz (N-[(Z)-amino(pyrazin-2-yl)methylidene]-5-methyl-1-(pyridin-2-yl)-1H-pyrazole-3-carbohydrazonic acid) was synthesized by in situ condensation of methyl imino pyrazine-2-carboxylate with 5-methyl-1-(2-pyridyl) pyrazole-3-carbohydrazide. In this work we have also used two of our earlier ligands PzCAP (5-methyl-N-[(1E)-1-(pyridin-2-yl)ethylidene]-1H-pyrazole-3-carbohydrazonic acid) (Dalton Trans., 2009, 8215) and PzOAP (N-[(Z)-amino(pyridin-2-yl)methylidene]-5-methyl-1H-pyrazole-3-carbohydrazonic acid) (Dalton Trans., 2007, 1229). These ligands PzCAP, PzOAP and PyPzOAPz were made to react with Mn(ClO(4))(2)·6H(2)O to produce three pentanuclear Mn(II) clusters [Mn(5)(PzCAP)(6)](ClO(4))(4) (1), [Mn(5)(PzOAP)(6)](ClO(4))(4) (2) and [Mn(5)(PyPzOAPz)(6)](ClO(4))(4) (3). These complexes have been characterized by X-ray structural analyses and variable temperature magnetic susceptibility measurements. All complexes have a pentanuclear core with trigonal bipyramidal arrangement of Mn(II) atoms, where, the axial metal centers have a N(3)O(3) chromophore and the equatorial centers have N(4)O(2) with an octahedral arrangement. These Mn(5)(II) clusters 1, 2 and 3 show the presence of antiferromagnetic coupling within the pentanuclear manganese(II) core (J = -2.95, -3.19 and -3.00 cm(-1) respectively). Density functional theory calculations and continuous shape measurement (CShM) studies have been performed on these complexes to provide a qualitative theoretical interpretation of the antiferromagnetic behaviour shown by them. The pentanuclear Mn(II) cluster (1) on reaction with Cu(NO(3))(2)·6H(2)O in 1:1 mole proportion in CH(3)OH:H(2)O (60?:?40) forms a homoleptic [2 × 2] tetranuclear Cu(4)(II) grid [Cu(4)(PzCAP)(4)(NO(3))(2)](NO(3))(2)·8H(2)O (4). The same Cu(4)(II) grid is also obtained from a direct reaction between the ditopic ligand PzCAP with Cu(NO(3))(2)·6H(2)O in 1:1 mole proportion. This conversion of a cluster to a grid is a novel observation.  相似文献   

20.
The mononuclear Re(IV) compound of formula (PPh(4))(2)[ReBr(4)(mal)] (1) was used as a ligand to obtain the heterobimetallic species [ReBr(4)(μ-mal)Co(dmphen)(2)]· MeCN (2), [ReBr(4)(μ-mal)Ni(dmphen)(2)] (3), [ReBr(4)(μ-mal)Mn(dmphen)(2)] (4a), [ReBr(4)(μ-mal)Mn(dmphen)(H(2)O)(2)]·dmphen·MeCN·H(2)O (4b), [ReBr(4)(μ-mal)Cu(phen)(2)]·1/4H(2)O (5) and [ReBr(4)(μ-mal)Cu(bipy)(2)] (6) (mal = malonate dianion, dmphen = 2,9-dimethyl-1,10-phenanthroline, phen = 1,10-phenanthroline and bipy = 2,2'-bipyridine). The structures of 2 and 5 (single-crystal X-ray diffraction) are made up of neutral [ReBr(4)(μ-mal)M(AA)] dinuclear units [AA = dmphen with M = Co (2) and AA = phen with M = Cu (5)] where the metal ions are connected through a malonate ligand which exhibits simultaneously the bidentate [at the Re(IV)] and monodentate [at the M(II)] coordination modes. The carboxylate-malonate group in them adopts the anti-syn conformation with intramolecular ReM separation of 5.098(8) (2) and 4.947(2) ? (5). The magnetic properties of 1-6 were investigated in the temperature range 1.9-295 K. The magnetic behaviour of 1 is the expected for a magnetically isolated Re(IV) complex with a large value of the zero-field splitting (2D ca. -70 cm(-1)) whereas weak antiferromagnetic interactions between Re(IV) and M(II) are observed in the heterobimetallic compounds 2 (J = -0.63 cm(-1)), 3 (J = -1.37 cm(-1)), 4a (J = -1.29 cm(-1)), 5 (J = -1.83 cm(-1)) and 6 (J = -0.26 cm(-1)). Remarkably, 4b behaves as a ferrimagnetic chain with regular alternating Re(IV) and Mn(II) cations (J = -2.64 cm(-1)).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号