首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Concentrations of inhalable particulate matter (PM10), Pb, Zn, Pt, Ce, Cd, Se and of Benzo(a)pyrene (BaP) were determined in three locations near Venice from September 2000 to September 2001. Meteorological conditions were considered during the sampling period. All components showed higher concentrations during winter, except for Cd and Se in the two sites at Mestre. Spatial and temporal variations were observed. There were correlations between Pb and Zn and PM10, Cd and Se, Pb and BaP and, in the main street sampling site, also between BaP and Pt. Their possible sources of emission are discussed on the basis of correlations among elements.  相似文献   

2.
分夏、冬季采集南昌大学前湖校区室外和3个不同室内环境中的PM2.5,测定有机碳(OC)和元素碳(EC),并分析室内、外碳气溶胶质量浓度及其分布特征;利用OC-EC关系式半定量分析室内排放源;结合室内、外二次有机碳(SOC)和SOC/OC的分布进一步讨论不同室内排放源的特征及对SOC的影响;对4个采样点的8个碳组分丰度特征比较分析,结果表明复印/打印机对室内OC的贡献高,8个碳组分的丰度分布特征与其它排放源具有较明显的差异。  相似文献   

3.
A method for simultaneously determining the trace elements in particulate matter (PM) (PM2.5) by inductively coupled plasma mass spectrometry was established. The PM2.5-loaded filter samples were digested under the optimised conditions including a mixture of HNO3–HCl–HF with ultrasonication proceeding at 70°C for 2 h. Recoveries of 90.83–103.33% were achieved for 20 elements (Co, Sr, Ag, Cd, Sb, La, Ce, Sm, W etc.) in NIST standard reference material 1648a (urban PM). PM2.5 samples were collected at urban site in Hangzhou from August 2015 to November 2015. PM2.5 concentrations of 15% sampling days exceeded the daily limitation and the mean concentrations of PM2.5 from August to November reached the 66.4% of the limitation. PM2.5 concentrations in summer were higher than that in autumn. The concentration of Zn was highest, following with Al, Pb, Mn, Cu and As. Significant enrichment was observed in Mn, Zn, Pb, Ag, V, Ni, Cu, As, Se, Hg, Co, Cd and W, which was probably induced by vehicular exhaust, oil and residual fuel combustion and industrial emissions. The daily mass concentrations of PM2.5 and elements fluctuated significantly. Rainfall could significantly reduce the concentration of Ti, Mn, Cu, Zn, As, Se, Hg, Sr, Ag, Cd, Sb, La, Ce, Sm and Pb, and the risk levels of carcinogenic elements and non-carcinogenic elements in rain day were significantly lower (43.7–81.4%) than those in non-rain day. The risk levels of Co, Cd and As could lead to adverse health outcomes through the respiratory system, which should deserve more attention, while the risk levels of Ni and non-carcinogenic elements (Hg, Mn, Cu, Zn, Pb, V) were under average risk acceptance.  相似文献   

4.
Instrumental neutron activation analysis was used for the analysis of 25 trace elements in airborne particulate matter (PM) for air pollution monitoring. For the collection of air samples, the Gent stacked filter unit low volume sampler and two types of Nuclepore polycarbonate filters were employed. Samples were collected at selected sampling dates in suburban and industrial regions of Daejon city in the Republic of Korea. Mass concentrations and black carbon of PM were measured, and enrichment factors were calculated. The results were used to describe the emission sources and their correlation patterns.  相似文献   

5.
In the last decades, researchers have realised that the impact of trace elements (TE) in environmental solid substrates on ecological systems and biota cannot be ascertained appropriately by means of total metal content measurements. Assessment of TE chemical forms, types of binding and reactivity of their associations with particulate forms has, thus, been commonly performed via batch-wise equilibrium-based sequential extraction fractionation methods able to discern TE bound to different soil-phase compartments. In this paper, novel analytical strategies for monitoring the mobility, bioavailability and the eventual impact of anthropogenic TE in environmental solids are addressed. The potential of passive dosimeters based on microdialysis sampling for on-site, real-time monitoring of chemical contaminants in pore soil solution is thoroughly discussed and critically compared with active microsamplers. Recent miniaturised configurations designed for following the fate of target pollutants and the on-going chemical changes occurring at local soil sites, e.g., the rhizosphere environment, at high temporal resolution are also presented in detail. Kinetic information on the lability of the various TE forms associated to soil phases under simulated environmental changing conditions – that yield improved knowledge on short-term hazards of TE for the environment – can be obtained in a fully automated mode by means of flow-through microcolumn fractionation procedures. The use of sequential injection analysis, in terms of the implementation of on-line dynamic fractionation, is described and illustrated via selected examples comprising the well-accepted three-step SM&T sequential fractionation, protocol.  相似文献   

6.
Several studies have shown that combustion-derived fine particles cause adverse health effects. Previous toxicological studies on combustion-derived fine particles have rarely involved multiple endpoints and a detailed characterization of chemical composition. In this study, we developed a novel particle sampling system for toxicological and chemical characterization (PSTC), consisting of the Dekati Gravimetric Impactor (DGI) and a porous tube diluter. Physico-chemical and toxicological properties of the particles emitted from various combustion sources were evaluated in two measurement campaigns. First, the DGI was compared with the High-Volume Cascade Impactor (HVCI) and to the Dekati Low-Pressure Impactor (DLPI), using the same dilution system and the same sampling conditions. Only small differences were observed in the mass size distributions, total particulate matter (PM), and particulate matter with diameter smaller than 1 um (PM(1)) concentrations and geometric mass mean diameters (GMMD) between these three impactors. Second, the PSTC was compared with the HVCI sampling system, which has been optimal for collection of particulate samples for toxicological and chemical analyses. Differences were observed in the mass size distributions, total PM and PM(1) emissions, and GMMDs, probably due to the different sampling and dilution methods as well as different sampling substrates which affected the behavior of semi-volatile and volatile organic compounds. However, no significant differences were detected in the in vitro measurements of cytotoxicity between the samples collected with the PSTC and the HVCI systems. In measurements of genotoxicity, significant differences between the two sampling systems were seen only with the particles emitted from the sauna stove. In conclusion, due to compact size, PSTC is an applicable method for use in particle sampling as part of the toxicological and chemical characterization of particulate emissions from different combustion sources. It offers some advantages compared to the previously used high-volume sampling methods including compactness for field measurements, simple preparation of sample substrates and high extraction efficiency.  相似文献   

7.
This study is a one-year monitoring of the inhalable particulate matter (PM10) of Shanghai (from January 2006 to December 2006) to study PM10 pollution. Proton-induced X-ray emission (PIXE) was used to investigate the chemical elements in Shanghai PM10. The study finds seasonal variation in both mass concentration and of chemical elements in PM10. The results of the enrichment factor show that the chemical elements in the inhalable particles could be divided into two categories, soil elements from earth crust and anthropogenic pollution elements. The high enrichment factors suggest that anthropogenic activities were the dominant source for elements such as S, Cu, Cl, Zn, Pb and Br. Strong correlation of K, Ca, Fe and Ti, from factor analysis, indicates these elements coming from earth crust or soil, S, Zn and Pb from industrial pollution and/or traffic and Cl from coal combustion.  相似文献   

8.
建立电感耦合等离子体质谱(ICP–MS)测定空气PM2.5中的Pb和Cd元素的分析方法。采用连续β射线–DHS PM2.5大气颗粒物浓度监测仪采集空气中的PM2.5,以智能石墨消解PM2.5滤膜样品,ICP–MS测定其中的Pb和Cd元素含量。在优化的仪器条件下,元素Pb和Cd标准曲线的线性相关系数均为0.999 9,检出限分别为0.018,0.52ng/m3,满足HJ 657–2013的要求。Pb和Cd的加标回收率分别为95.8%~101.4%,99.3%~104.9%,测定结果的相对标准偏差分别为4.20%和2.38%(n=6)。对滤膜标准样品进行了测定,测定结果与标准值一致。该方法测定结果准确、可靠,可用于测定空气PM2.5中的Pb和Cd。  相似文献   

9.
In the present work a method for simultaneous metals determination, in urban air particulate matter by ICP-AES has been set up. A large number of elements (18) has been analyzed, including major (Al, Fe, K, and Mg), minor (Na, Pb and Zn) and trace (As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Sb, Sr and V) elements. The procedure consists of microwave sample acidic total digestion by HNO3/HF mixture and subsequent analysis by ICP-AES, using different assemblies depending on sample treatment procedure: a quartz Meinhard nebulizer/cyclonic chamber, if HF excess was eliminated, or a cross-flow nebulizer/plastic Scott chamber, suitable for application with HF. A cyclonic chamber for hydride generation was used for As, Sb and Hg determination. The procedure was tested with Standard Reference Materials 1648 NIST Urban Particulate Matter and Certified Reference Material No8 NIES "Vehicle Exhaust Particulates". Two sampling supports, quartz fibre and polycarbonate filters, have been examined in order to find the most suitable i.e. the one characterized by less interference. Some real samples of urban air particulate matter, TSP, PM10 and PM2.5 fractions, collected during an intercomparison campaign promoted by Regione Lombardia, have been analyzed with the procedure developed.  相似文献   

10.
农业收割期间排放的颗粒物是农忙期影响大气气溶胶组成的主要来源,因此明确农业收割期间排放的大气颗粒物排放特征具有重要意义。本实验立足河南省新乡市集约化农田实验基地,开展冬小麦区农业收割期间的大气颗粒物及其组分排放特征实验。结果表明收割期间的PMcoarse比其它时期高8.20%,农业站点收割时期的PMcoarse比其它时期高了72.22%,明确了其颗粒物污染特征为仅PM10升高,而非PM10和PM2.5同时升高,同时PM10的升高非PM2.5升高引起的;含量最高的前5种元素是Al、Ca、Fe、K、Mg;收割期间,Fe的特征比值最高为0.79;Ca2+K+离子百分含量在PMcoarse中占比最高;特征值为0.81和0.78。综合水溶性离子和元素结果,Ca2+K+Fe浓度协同变化可作为小麦收割过程颗粒物对大气污染影响的指纹识别,以区别于其他污染类型;便于大气污染防治行政主管部门有针对性的查污、防污、治污,提高人民群众生活环境的空气质量。  相似文献   

11.
This review describes the different steps involved in the determination of arsenic in air, considering the particulate matter (PM) and the gaseous phase. The review focuses on sampling, sample preparation and instrumental analytical techniques for both total arsenic determination and speciation analysis. The origin, concentration and legislation concerning arsenic in ambient air are also considered. The review intends to describe the procedures for sample collection of total suspended particles (TSP) or particles with a certain diameter expressed in microns (e.g. PM10 and PM2.5), or the collection of the gaseous phase containing gaseous arsenic species. Sample digestion of the collecting media for PM is described, indicating proposed and established procedures that use acids or mixtures of acids aided with different heating procedures. The detection techniques are summarized and compared (ICP-MS, ICP-OES and ET-AAS), as well those techniques capable of direct analysis of the solid sample (PIXE, INAA and XRF). The studies about speciation in PM are also discussed, considering the initial works that employed a cold trap in combination with atomic spectroscopy detectors, or the more recent studies based on chromatography (GC or HPLC) combined with atomic or mass detectors (AFS, ICP-MS and MS). Further trends and challenges about determination of As in air are also addressed.  相似文献   

12.
A method was developed and tested to identify and quantitate carbonyls and multifunctional carbonyls in fine particulate matter (PM2.5; <2.5 microm aerodynamic diameter). The method relies on ultrasonic extraction of particulate matter on filters at -8 degrees C; derivatization with O-(2,3,4,5,6-pentafluorobenzyl) hydroxylamine (PFBHA), and PFBHA along with bis (trimethylsilyl) trifluoroacetamide (BSTFA); and detection of the derivatives by gas chromatography/ion trap mass spectrometry. Ultrasonic extraction of model compounds from enriched particles was affected by solvent polarity (water > methylene chloride > toluene-isopropanol (2 + 1, v/v). Water provided the highest recovery for dihydroxy acetone, pyruvic acid, and hydroxy acetone, compared to methylene chloride, and toluene-isopropanol. Lowering the ultrasonication bath temperature from 0 degrees to -8 degrees C improved the recoveries of the less water soluble and more volatile species-methacrolein, methyl vinyl ketone, 2,3-butanedione, and tolualdehyde. The power of the method was demonstrated by identification and quantitation of carbonyls and multifunctional carbonyls in sample extracts of fine particulate matter (PM2.5) collected in the Caldecott tunnel, CA. The identities of crotonaldehyde, 2,3-butanedione, glyoxal, 9H-fluoren-9-one, glycolaldehyde, glyoxylic acid, levulinic acid, and 3-hydroxybenzaldehyde were confirmed by comparing the relative retention time and mass spectra of the analyte in the sample extract with an authentic standard. Quantitation of crotonaldehyde, glyoxal, 2,3-butanedione, glyoxylic acid, and levulinic acid was accomplished. This is the first report of glyoxylic acid, levulinic acid, and 3-hydroxybenzaldheyde in PM2.5 particles sampled in a roadway tunnel. It is also the first report of a C10 carbonyl with the molecular formula of C10H16O2, a hydroxy carbonyl with the molecular formula of C17H21NO2, and a hydroxy or dihydroxy carbonyl with the molecular formula of C16H14O2 or C9H10O3. The high-molecular weight hydroxy carbonyls, which were found only in the heavy-duty (diesel) bore, may be tracers of diesel emissions in air.  相似文献   

13.
During and after the application of currently used pesticides (CUPs) a significant fraction of applied pesticides can be lost to the air. A confirmatory and rapid procedure has been developed for the determination of four fungicides (carbendazim, thiabendazol, imazalil and bitertanol), three insecticides (imidacloprid, methidathion and pyriproxyfen), one helicide (methiocarb) and one acaricide (hexythiazox) in fine airborne particulate matter (PM 2.5) at trace level. The proposed method includes extraction of PM 2.5-bound pesticides by pressurized liquid extraction (PLE) followed by a direct injection into LC-MS/MS. The main parameters affecting the performance of the electrospray ionization source and PLE parameters were optimised using statistical design of experiments (DoE). The matrix effect was also evaluated. Recoveries ranged from 86 to 106% and the limit of quantification (LoQ) was 6.5 pg m(-3) for eight out of nine pesticides, when air volumes of 760 m(3) were collected. The method was applied to 60 samples collected from four stations of the monitoring network of the Regional Valencia Government (Spain) during August-October 2007. The measured concentrations ranged from not detected to 1,371 pg m(-3).  相似文献   

14.
The pathogenesis of PM2.5 was evaluated on rats in model groups using a metabonomic method by UPLC-Q-TOF-MS and 17 potential endogenous metablites were identified. The primary metabolism pathways involved pentose and glucuronate interconversions, starch and sucrose metabolism, tryptophan metabolism, tyrosine metabolism, phenylalanine metabolism, purine metabolism, acetaminophen metabolism pathway, retinol metabolism and valproic acid metabolism pathway.  相似文献   

15.
In this paper, the preliminary results of a study on concentration of heavy metals in PM2.5 (atmospheric particles with aerodynamic diameter less than 2.5 microm) fractions of atmospheric particulate matter, sampled in Milan, are presented. This work aims to develop an electroanalytical method to analyse Pb, Cu, Cd and Ni in PM2.5 and to investigate seasonal and weekly trends in the amount of PM2.5 and its composition for considered metals. The samples have been selected within the seasons ranging from September 2002 to November 2003 so that they represent the possible seasonal changes; the samples within this period have been chosen in order to have data relevant to both working days and holidays. The determination of Cd, Pb and Cu has been carried out by Differential Pulse Anodic Stripping Voltammetry, whereas the concentration of Ni has been determined by Differential Pulse Adsorptive Cathodic Stripping Voltammetry. The concentrations of the metals in the sampled atmosphere and in the PM2.5 have been evaluated; through ANOVA possible seasonal or weekly variations in the above cited concentrations have been investigated.  相似文献   

16.
PM 10 and PM 2.5 (PMx) have been recently introduced as new air quality standards in the EU (Council Directive 1999/30/EC) for particulate matter. Different estimates and measurements showed that the limit values for PM 10 will be exceeded at different locations in Europe, and thus measures will have to be taken to reduce PMx mass concentrations. Source apportionment has to be carried out, demanding comparable methods for ambient air and emission sampling and chemical analysis. Therefore, a special ambient-air sampler and a specially designed emission sampler have been developed. Total-reflection X-ray fluorescence analysis (TXRF) was used for multi-element analyses as a fast method with low detection limits. For ambient air measurements, a sampling unit was built, impacting particle size classes 10–2.5 μm and 2.5–1.0 μm directly onto TXRF sample carriers. An electrostatic precipitator (ESP) was used as back-up filter to also collect particles <1 μm directly onto the TXRF sample carriers. Air quality is affected by natural and anthropogenic sources, and the emissions of particles <10 μm and <2.5 μm, respectively, have to be determined to quantify their contributions to the so-called coarse (10–2.5 μm) and fine (<2.5 μm) particle modes in ambient air. For this, an in-stack particle sampling system was developed, according to the new ambient air quality standards and in view of subsequent analysis by TXRF. These newly developed samplers, in combination with TXRF analyses, were employed in field campaigns to prove the feasibility and capabilities of the approach. Ambient air data show the quantification of a wide spectrum of elements. From those concentrations, PMx ratios were calculated as an indicator for different sources of elements. Results useful for source apportionment are also the elemental day/night ratios calculated to determine local contributions to PMx mass concentrations. With regard to the emission measurements, results of mass and elemental concentrations obtained in two different processes (steel industry) show that the new PM 10/PM 2.5 cascade impactor and measurements with TXRF give characteristic fingerprints for different sources. Size-fractionated ambient air and emission sampling, together with multi-element analysis, prove to be a useful approach to derive information for source–receptor modeling, a method necessary to set up effective abatement strategies to reduce PMx mass concentrations.  相似文献   

17.
When high mineral loads in atmospheric particulate matter (PM) are present, particular attention should be paid to the selection of appropriate acidic digestion protocols for wet chemical analysis. We report on a comparative study of elemental recovery yields from five different pre-analytical acid digestion procedures for mineral-rich urban background PM10 samples collected in the city of Constantine (Northeastern Algeria). Five reference materials (NIST 1633b, UPM 1648, NAT-7, SO-2 and SO-4) were also digested according to the same protocols. The selected acidic digestion/extraction procedures are widely used for PM chemical analysis and comprise P1 (HNO3/HF/HCl), P2 (HCl/HNO3), P3 (HCl/H2O2/HNO3), P4 (HNO3/HF/HClO4) and P5 (HNO3/H2O2); the latter assisted with microwave digestion. Elemental recovery yields were compared for major and trace elements typically determined in PM for source apportionment analysis and the results evidenced large differences. For most elements, the bulk extraction procedures (requiring the use of HF) allowed a full elemental recovery, particularly for elements that are associated with aluminium silicate species and oxides that are resistant to mild acid attack. In contrast, in the extraction protocols without HF low recovery yields were obtained for elements such as Al, Ti, Zr, Sc and other aluminium silicate-related elements in PM10 samples with high mineral dust load. We highlight that the European standard digestion method EN-14902:2005 should be applied specifically for the metals for which this method was developed, but caution should be taken when the analysis of other elements in PM is required, especially in urban areas where road and vehicle wear dust is likely to be a major component of ambient PM. When using wet chemistry analysis for PM source apportionment studies, we strongly recommend HF bulk dissolution of samples to ensure the reliability of the geochemical information when coupled with an appropriate analytical tool.  相似文献   

18.
The concentration of more than 25 trace elements have been determined in total air particulate matter and in the size segregated fractions from the urban area of Pavia (North Italy). The PM10 fraction was also collected and analyzed. A study of the solubility in water and in physiological solution of the trace elements contained in the PM10 was also carried out. The resulting solutions were further submitted to column chromatography using Chelex 100 to perform a preliminary chemical characterization. INAA was used as the main analytical technique. ET-AAS was used for all Pb and Cd measurements and, in some cases, for the analysis of V, Mn, Cu and Ni.  相似文献   

19.
Airborne particulate matter contains numerous organic species, including several polycyclic aromatic hydrocarbons (PAHs) that are known or suspected carcinogens. Existing methods for measuring airborne PAHs are complex and costly, primarily because they are designed to collect both gas-phase and particle-phase PAH constituents. Here, we report an assay for measuring particle-bound PAHs in archived filters from the network of U.S. monitoring stations for particles less than 2.5 microm in diameter (PM2.5), without the need for deploying specialized samplers. PAHs are extracted from Teflon filters with dichloromethane, concentrated, and measured at trace levels using gas chromatography-mass spectrometry. Although PAHs with 3-6 aromatic rings can be assayed, results are only unambiguously accurate for compounds with 5- or 6-rings, due to variable vaporization losses of the more volatile 3- and 4-ring compounds during sampling and/or storage. The method was evaluated for sensitivity, recovery, precision, and agreement of paired air samples, using PM2.5 samplers locally in Chapel Hill, NC. Additionally, three sets of archived samples were analyzed from a study of PM2.5 in the Czech Republic. Levels of some 4-ring and all 5- and 6-ring PAHs in both the local and Czech samples were consistent with published results from investigations employing PAH-specific air samplers. This work strongly suggests that assessment of particle-bound 5- and 6-ring PAHs from archived PM2.5 filters is quantitatively robust. The assay may also be useful for selected 4-ring compounds, notably chrysene and benzo(a)anthracene, if PM2.5 filters are stored under refrigeration.  相似文献   

20.
The optimisation of a micro-analytical two-step sequential leaching procedure for the determination of non-volatile ions (NO3, SO42−, Cl, Na+, Mg2+, NH4+ and Ca2+) and of 17 elements (Al, As, Cd, Cr, Cu, Fe, Mg, Mn, Ni, Pb, S, Se, V, Zn, Sb, Si and Ti) in two fractions—extract and residue—on the same sample of air particulate matter is described. The two-step method was tested on the SRM NIST 1648 for equivalence with two reference methods, the EMEP procedure for ions extraction and the EN 12341 standard for the elemental determination of the PM10 and is suitable for application to small sample amounts (less than 1 mg of particulate matter is needed), i.e. those collected by daily low volume filter-sampling. Performance times of the procedure were optimised to meet the target of routine application for large scale monitoring samples. A single ultrasonic-assisted extraction of air particulate matter is performed in 0.01 M acetate buffer at pH 4.5, followed by IC ions analysis and ICP-OES elemental analysis of the extract and by ICP-OES elemental analysis of the mineralized residue after dissolution by microwave-assisted digestion with a HNO3/H2O2 mixture. Using a pH buffered extracting solvent was preferred to water or diluted acid solutions to improve the reproducibility of metals extraction with respect to existing leaching methods; the influence of pH, nature and concentration of the buffer solution and extraction time on analytes concentration in the extract is discussed. Values of ions extraction and elements recoveries resulted fairly equivalent with those obtained by the reference methods. The study was also extended to some non-certified elements (Mg, S, Sb, Si and Ti) for their environmental significance. Elements recoveries were obtained as sum of the extract and residue fractions and were comparable with those obtained by direct dissolution. Standard deviations were within 10% for almost all detected ions and elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号