首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four complexes of the general formula Ru(NNN)2+2 (N NN = tridentate N-heterocyclic ligand) were synthesized and studied spectroscopically. All exhibit visible absorption spectra that are charge-transfer-to-ligand in origin, are luminescent in glasses at 77 K, and display emission spectra that possess energies, structures, and decay tines that label them as charge transfer.  相似文献   

2.
Photochemical exchange of carbonyls was used to produce new ruthenium dialkylcyanamide and nitrile compounds [RuCl2(bpy)(CO)(NCNMe2)] (2), [RuCl2(bpy)(CO)(NCNEt2)] (3), and [RuCl2(bpy)(CO)(NCEt)] (4) from trans(Cl)-[RuCl2(bpy)(CO)2] (1). The reaction energetics, steric effects and electronic effects induced by the dialkylcyanamide and nitrile ligands were studied using computational DFT methods and cyclic voltammetry. In all cases the photochemical exchange reaction favors rearrangement of the ligands and formation of the trans(Cl,L)-[RuCl2(bpy)(CO)L] (L = NCNMe2, NCNEt2 or NCEt) isomer as the main products. The oxidation potential of the complexes decreases with the increase of the HOMO energy and of net electron-donor character of the ligands, the dialkylcyanamides (whose electrochemical Lever EL ligand parameter has been estimated) behaving as stronger net electron donors than propiononitrile or CO. The electronic effect of the dialkylcyanamide and nitrile ligands is also reflected into the HOMO-LUMO energy difference, which is slightly reduced compared to the original dicarbonyl compound 1. The computational results show that the geometry of the isomer plays also an important role in the determination of orbital energies.  相似文献   

3.
[Ru(bpy)(2)(Mebpy-COOH)](PF(6))(2).3H(2)O (1), [Ru(phen)(2)(Mebpy-COOH)](ClO(4))(2).5H(2)O (2), [Ru(dppz)(2)(Mebpy-COOH)]Cl(2).9H(2)O (3), and [Ru(bpy)(dppz)(Mebpy-COOH)](PF(6))(2).5H(2)O (4) (bpy = 2,2'-bipyridine, Mebpy-COOH = 4'-methyl-2,2'-bipyridine-4-carboxylic acid, phen = 1,10-phenanthroline, dppz = dipyrido[3,2,-a;2',3-c]phenazine) have been synthesized and characterized spectroscopically and by microanalysis. The [Ru(Mebpy-COOH)(CO)(2)Cl(2)].H(2)O intermediate was prepared by reaction of the monocarboxylic acid ligand, Mebpy-COOH, with [Ru(CO)(2)Cl(2)](n), and the product was then reacted with either bpy, phen, or dppz in the presence of an excess of trimethylamine-N-oxide (Me(3)NO), as the decarbonylation agent, to generate 1, 2, and 3, respectively. For compound 4, [Ru(bpy)(CO)Cl(2)](2) was reacted with Mebpy-COOH to yield [Ru(bpy)(Mebpy-COOH)(CO)Cl](PF(6)).H(2)O as a mixture of two main geometric isomers. Chemical decarbonylation in the presence of dppz gave 4 also as a mixture of two isomers. Electrochemical and spectrophotometric studies indicated that complexes 1 and 2 were present as a mixture of protonated and deprotonated forms in acetonitrile solution because of water of solvation in the isolated solid products. The X-ray crystal structure determination on crystals of [Ru(bpy)2(MebpyCOO)][Ru(bpy)(2)(MebpyCOOH)](3)(PF(6))(7), 1a, and [Ru(phen)(2)(MebpyCOO)](ClO(4)).6H(2)O, 2a, obtained from solutions of 1 and 2, respectively, revealed that 1a consisted of a mixture of protonated and deprotonated forms of the complex in a 1:3 ratio and that 2a consisted of the deprotonated derivative of 2. A distorted octahedral geometry for the Ru(II) centers was found for both complexes. Upon excitation at 450 nm, MeCN solutions of the protonated complexes 1-4 were found to exhibit emission bands in the 635-655 nm range, whereas the corresponding emission maxima of their deprotonated forms were observed at lower wavelengths. Protonation/deprotonation effects were also observed in the luminescence and electrochemical behavior of complexes 1-4. Comprehensive electrochemical studies in acetonitrile show that the ruthenium centers on 1, 2, 3, and 4 are oxidized from Ru(II) to Ru(III) with reversible potentials at 917, 929, 1052, and 1005 mV vs Fc(0/+) (Fc = ferrocene), respectively. Complexes 1 and 2 also exhibit an irreversible oxidation process in acetonitrile, and all compounds undergo ligand-based reduction processes.  相似文献   

4.
Synchrotron techniques, X-ray-excited optical luminescence (XEOL) combined with X-ray absorption fine structures (XAFS), have been used to study the electronic structure and optical properties of a series of luminescent gold(I) complexes with diphosphine and bipyridine ligands using tunable X-rays (in the regions of the C and P K-edges and the Au L3-edge) and UV from synchrotron light sources. The effects of gold-ligand and aurophilic interactions on the luminescence from these gold(I) complexes have been investigated. It is found that the luminescence from these complexes is phosphorescence, primarily due to the decay of the Au (5d) --> PR3 (pi*), metal to ligand charge transfer (MLCT) excitation as well as contributions from the conjugated pi-system in the bipyridine ligands via the gold-nitrogen bond. The large Au 5d spin-orbit coupling enhances the intersystem crossing. The elongation of the hydrocarbon chain of the diphosphine ligand does not greatly affect the spectral features of the luminescence from the gold(I) complexes. However, the intensity of the luminescence was reduced significantly when the bipyridine ligand was replaced with 1,2-bis(4-pyridylamido)benzene. The aurophilic interaction, as investigated by EXAFS at the Au L3-edge, is shown to be only one of the factors that contribute to the luminescence of the complexes.  相似文献   

5.
The focus of this report is the synthesis and properties of two new analogues of ruthenium(ii) tris-bipyridine, a monomer and dimer. The complexes contain the ligand 6,6'-(ethan-1,2-diyl)bis-2,2'-bipyridine (O-bpy) which contains two bipyridine units bridged in the 6,6' positions by an ethylene bridge. Crystal structures of the two complexes formulated as [Ru(bpy)(O-bpy)](PF6)2 and [(Ru(bpy)2)2(O-bpy)](PF6)4 reveal structures of lower symmetry than D3 which affects the electronic properties of the complexes as substantiated by density functional theory (DFT) and time dependent density functional theory (TDDFT) calculations. The HOMO lies largely on the ruthenium center; the LUMO spreads its electron density over the bipyridine units, but not equally in the mixed O-bpy-bpy complexes. Calculated Vis/UV spectra using TDDFT methods agree with experimental spectra. The lowest lying triplet excited state for [Ru(bpy)(O-bpy)](PF6)2 is 3MC resulting in a low emission quantum yield and a large chloride ion photosubstitution quantum yield.  相似文献   

6.
Coordination complexes have been used extensively as the photoactive component of artificial photosynthetic devices. While polynuclear arrays increase the probability of light absorption, the incorporation of the stereogenic Ru(2,2'-bipyridine)(3)(2+) motif gives rise to diastereomeric mixtures whereas the achiral Ru(2,2':6',2"-terpyridine)(2)(2+) motif creates stereopure polynuclear complexes. Thus, polynuclear arrays composed of ruthenium(II) complexes of tridentate ligands are the targets of choice for light-harvesting devices. As Ru(II) complexes of tridentate ligands have short excited state lifetimes at room temperature (r. t.), considerable effort has been focused on trying to increase their r. t. luminescence lifetime for practical applications. This tutorial review will report on the sophisticated synthetic strategies currently in use to enhance the room temperature photophysical properties of Ru(II) complexes of tridentate ligands.  相似文献   

7.
A facile and original synthesis of four 2,2'-bipyridine (bipy) ligands grafted with thiophene subunits is described using phase transfer experimental conditions: related Ru(II) complexes exhibit well-defined redox and photophysical properties which were probed by cyclic voltammetry, UV-vis, steady-state emission and transient absorption spectroscopy.  相似文献   

8.
Summary A series of mono- and dinuclear cyanodithioformate complexes containing (bipy)2RuII and CpRuII moieties were prepared. The complexes were characterized using various physico-chemical techniques; spectral and electro-chemical studies of selected complexes were also made.  相似文献   

9.
Two new zinc(II) complexes have been synthesized and studied by single crystal X-ray diffraction method: [Zn(L1)Cl2]·2DMF (1) and [Zn(L2)Cl2]·DMF (2) (L1 = 3,3′-bis(2-benzimidazolyl)-2,2′-dipyridine, L2 = 3,3′-bis[2-bis(2-ethylbenzimidazolyl)]-2,2′-dipyridine). Compound 1 is monoclinic, C2/c, a = 23.142(3) ?, b = 11.845(1) ?, c = 14.735(3) ?; compound 2 is orthorhombic, C2221, a = 12.140(7) ?, b = 16.283(9) ?, c = 16.51(1) ?. In both compounds, Zn(II) cations are coordinated by two chlorine atoms and two benzimidazole nitrogen atoms in a slightly distorted tetrahedron fashion. Structural features responsible for fluorescent properties of the complexes are discussed.  相似文献   

10.
cis-[Ru(dmp)(2)(CH(3)CN)(2)][PF(6)](2) (dmp = 2,9-dimethyl-1,10-phenanthroline), complex 1[PF(6)](2), exists in two enantiomeric forms, Delta and Lambda. During treatment with the chiral anion tris[tetrachlorobenzene-1,2-bis(olato)]phosphate(V), also named Trisphat, in dichloromethane it has been possible to selectively precipitate each enantiomer, associated with Trisphat in the form of the heterochiral pair. This enantiomerically pure compound has been characterized in solution by UV-visible, CD, ESI-MS, and NMR spectroscopy and by X-ray crystallography in the solid state. Trisphat was also used as an NMR chiral shift reagent to determine the enantiomeric excess of the complex preparations. The "chiral-at-metal" ruthenium complex has been evaluated as a catalyst for the oxidation of sulfides to sulfoxides by hydrogen peroxide. The reactions displayed a low but significant level of enantioselectivity (18% ee in the case of 4-bromophenyl methyl sulfide). Our results thus provide the first demonstration that the chiral information carried by a stereogenic metal center can be catalytically transferred to molecules during stereoselective oxidation.  相似文献   

11.
Three unsymmetrical tetradentate Schiff base ligands, H2salipn, H2salipn-Br4 and H2salipn-Cl2, have been synthesized from the typical condensation reactions of treating 1,2-diaminopropane with salicylaldehyde, 3,5-dibromosalicylaldehyde and 5-chlorosalicylaldehyde, respectively. Treatment of [RuCl2(PPh3)3] with one equivalent of H2salipn or H2salipn-Br4 in the presence of triethylamine in tetrahydrofuran (THF) afforded the corresponding ruthenium(III) complexes [RuIIICl(PPh3)(salipn)] (1) and [RuIIICl(PPh3)(salipn-Br4)] (2). Interaction of [RuHCl(CO)(PPh3)3] with one equivalent of H2salipn-Cl2 or H2salipn-Br4 under the same conditions led to isolation of ruthenium(II) complexes [RuII(CO)(PPh3)(salalipn-Cl2)] (3) and [RuII(CO)(PPh3)(salalipn-Br4)] (4), respectively, in which one of the imine bonds was nucleophilically attacked by hydride to result in the formation of a mixed imine-amine ligand. The molecular structures of 1?1.5CH2Cl2, 2, 3?0.5CH2Cl2 and 4 have been determined by single-crystal X-ray crystallography. The electrochemical properties of 14 were also investigated. Their cyclic voltammograms displayed quasi-reversible Ru(IV)/Ru(III) and Ru(III)/Ru(II) couples with Eo ranging from 0.67 to 1.05 V and 0.74 to 0.80 V vs. Ag/AgCl (0.1 M), respectively.  相似文献   

12.
13.
A series of unsymmetrical mono(imine)pyrroles (L1–L3) were synthesized by microwave irradiation from 2-acetylpyrrole and a series of dimethylanilines with two methyl groups at different positions on the aniline ring. A simplified synthetic method was initiated to prepare the corresponding nickel complexes NiL2 (1–3) with direct condensation of mono(imine)pyrrole and nickel chloride. The compounds were determined using a suite of techniques (i.e. 1H NMR, 13C NMR, IR, EA, MS). L1–L3 and 3 were further characterized by X-ray crystal diffraction. The structure of 3 showed that the ligand chelated to nickel with 2?:?1 M ratio, in spite of a 1?:?1 rate of charge. Application of 1–3 in ethylene polymerization indicated that mono(imino)pyrrole nickel complexes showed low activities. The polymerization reaction time and temperature, as well as the ligand structure, influenced the catalytic performance to some extent. Experimental data showed higher activity as –CH3 on the aniline ring is closer to the imine group.  相似文献   

14.
Treatment of a thiolato-bridged Ru(II)Ag(I)Ru(II) trinuclear complex, [Ag{Ru(aet)(bpy)(2)}(2)](3+) (aet = 2-aminoethanthiolate; bpy = 2,2'-bipyridine), with NaI in aqueous ethanol under an aerobic condition afforded a mononuclear ruthenium(II) complex having an S-bonded sulfinato group, [1](+) ([Ru(aesi-N, S)(bpy)(2)](+) (aesi = 2-aminoethanesulfinate)). Similar treatment of optically active isomers of an analogous Ru(II)Ag(I)Ru(II) trinuclear complex, Δ(D)Δ(D)- and Λ(D)Λ(D)-[Ag{Ru(d-Hpen-O,S)(bpy)(2)}(2)](3+) (d-pen = d-penicillaminate), with NaI also produced mononuclear ruthenium(II) isomers with an S-bonded sulfinato group, Δ(D)- and Λ(D)-[2](+) ([Ru(d-Hpsi-O,S)(bpy)(2)](+) (d-psi = d-penicillaminesulfinate)), respectively, retaining the bidentate-O,S coordination mode of a d-Hpen ligand and the absolute configuration (Δ or Λ) about a Ru(II) center. On refluxing in water, the Δ(D) isomer of [2](+) underwent a linkage isomerization to form Δ(D)-[3] (+) ([Ru(d-Hpsi-N,S)(bpy)(2)](+)), in which a d-Hpsi ligand coordinates to a Ru(II) center in a bidentate-N,S mode. Complexes [1](+), Δ(D)- and Λ(D)-[2](+), and Δ(D)-[3](+) were fully characterized by electronic absorption, CD, NMR, and IR spectroscopies, together with single-crystal X-ray crystallography. The electrochemical properties of these complexes, which are highly dependent on the coordination mode of sulfinate ligands, are also described.  相似文献   

15.
Several new symmetrical aromatic hydrocarbon bridged bipyridine ligands and their binuclear Ru (II) complexes have been designed, synthesized and characterized on the basis of 1H NMR, MS and HRMS. Their absorption and emission properties, electrochemical behaviors and electrochemical luminescence were investigated. All ruthenium complexes show characteristic MLCT absorption and similar redox potential. Among the three complexes reported, 4c has the best electrochemical luminescence property.  相似文献   

16.
By self-assembly of delocalized organic ligands (L1 and L2) with Cd(SCN)2, ZnI2 and Zn(NCS)2, three luminescent complexes ZnI2(L1)2 (I), [Cd(L1)21,3-SCN)2] n (II) and Zn(NCS)2(L2)2 (III) were obtained (L1 = 2-{5,5-dimethyl-3-[2-(pyridine-4-yl)ethenyl]cyclohex-2-enylidene}propanedinitrile and L2 = 2-{5,5-dimethyl-3-[2-(pyridine-3-yl)ethenyl]cyclohex-2-enylidene}propanedinitrile). The structures of the complexes were determined by single crystal X-ray diffraction analysis (CIF files CCDC nos. 1406116 (I), 1406115 (II), and 1400360 (III)). In complex I, Zn(II) is coordinated by two functional organic ligands and two I ions, to form a I2N2 distorted tetrahedral geometry. In 1D coordination polymer II, the Cd(II) centers show six-coordinated geometries, two organic ligands and four SCN ions involve in coordination with each Cd(II) center. The thiocyanate groups show μ1,3-SCN bridging coordination modes and the adjacent Cd(II) ions are bridged by double μ1,3-SCN ions to form an infinite chain. In complex III, Zn(II) is coordinated by two functional organic ligands and two NCS groups, to form a N4 distorted tetrahedral geometry. Compared with the free ligands, the complexes show superior luminescent property with red-shift and enhancement of fluorescence intensity.  相似文献   

17.
The complexes [(C6H6)RuCl2(Hmtp)] and [(C6H6)RuCl2(C4H4N2)] have been prepared and studied by IR, 1H NMR, UV–VIS spectroscopy and X-ray crystallography. The complexes were prepared by reactions of [(C6H6)RuCl2]2 with 7-hydroxy-5-methyl[1,2,4]triazolo[1,5-a]pyrimidine (Hmtp) and pyrimidine, respectively, in methanol. The electronic structures and UV–Vis spectra of the complexes have been calculated using the TD–DFT method.  相似文献   

18.
Summary Schiff bases (HL) produced by the condensation ofN-methyl-S-methyldithiocarbazate with -diketones and aromatic aldehydes or ketones react with [RuHClCO(PPh3)3] to yield hexacoordinated complexes of the type [RuClCO(PPh3)2(L)]. These Schiff bases react with [RuCl2{P(OR)3}4] in 11 molar ratio to yield [RuCl{P(OR)3}2(L)] in which L is a tridentate. The chlorine atom in the complex can be removed in coordinating solvents in the presence of anions such as [BPh4] to give cationic complexes. Bis chelate complexes, [Ru{P(OR)3}2(L)2] are prepared from 12 molar proportions of the reactants. These complexes were characterised by elemental analyses, i.r.,1H n.m.r., u.v. and conductivity studies.NCL Communication No. 4224.  相似文献   

19.
The synthesis and characterization of mixed ligand 2,2';6',2' '-terpyridine (tpy) ruthenium complexes with 2,6-bis([1,2,4]triazol-3-yl)pyridine, 2,6-bis(5-phenyl-[1,2,4]triazol-3-yl)pyridine, and 2,6-bis([1,2,3,4]tetrazol-5-yl)pyridine are reported. The species are characterized by HPLC, 1H NMR, UV/vis, and emission spectroscopy. The photophysical properties of the complexes are investigated as a function of temperature over the range 80-320 K. The emission lifetime observed for the fully deprotonated compounds at room temperature is about 80 ns. This increase by 2 orders of magnitude with respect to the parent "[Ru(tpy)2](2+)" complex is rationalized by an increase in the energy of the metal based dsigma orbital, rather than by manipulation of the pi* orbitals on the ligands. The acid-base and electrochemical properties of the compounds are reported also.  相似文献   

20.
Reactions of the new acyclic ligand DNBH with RuCl3 · 3H2O, followed by addition of a secondary ligand L (L = PPh3, 1,10-phenanthroline, 2,2-bipyridine, pyridine and 2,4-diaminotoluene), yield six binuclear metal complexes, TR1–TR6. Two different methods were employed: template and a two-step synthesis, both yielding the same complexes. DNBH and its metal complexes were characterised by a combination of spectroscopic, elemental and magnetic susceptibility data. Coordination was found to be through the carbonyl oxygen of amide and phenolic oxygen in the octahedral environment of the metal. DNBH and some of the metal complexes display antibacterial properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号