首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electronic structures of heme a of cytochrome c oxidase in the redox states were studied, using hybrid density functional theory with a polarizable continuum model and a point charge model. We found that the most stable electronic configurations of the d electrons of the Fe ion are determined by the orbital interactions of the d orbitals of the Fe ion with the π orbitals of the porphyrin ring and the His residues. The redox reaction of the Fe ion influences the charge density on the formyl group through the π conjugation of the porphyrin ring. In addition, we found the charge transfer from the Fe ion to the propionate group of heme a in the redox change despite the lack of the π‐conjugation. We elucidated that the charge propagation originates from the heme a structure itself and that the origin of the charge delocalization to the heme propionate is the orbital interactions between the d orbital of the Fe ion and the p orbitals of the carboxylate part of the heme propionate via the π conjugation of the porphyrin ring and the σ* orbital of the C? C bond of the propionate group. The electrostatic effect by surrounding proteins enhances the charge transfer from the Fe ion to the propionate group. These results indicate that heme propionate groups serve electron mediators in electron transfer as well as electrostatic anchors, and that proteins surrounding the active site reinforce the congenital abilities of the cofactors. © 2009 Wiley Periodicals, Inc. J Comput Chem 2010  相似文献   

2.
The (13)C pulsed ENDOR and NMR study of [meso-(13)C-TPPFe(OCH(3))(OO(t)Bu)](-) performed in this work shows that although the unpaired electron in low-spin ferrihemes containing a ROO(-) ligand resides in a d(pi) orbital at 8 K, the d(xy) electron configuration is favored at physiological temperatures. The variable temperature NMR spectra indicate a dynamic situation in which a heme with a d(pi) electron configuration and planar porphyrinate ring is in equilibrium with a d(xy) electron configuration that has a ruffled porphyrin ring. Because of the similarity in the EPR spectra of the hydroperoxide complexes of heme oxygenase, cytochrome P450, and the model heme complex reported herein, it is possible that these two electron configurations and ring conformations may also exist in equilibrium in the enzymatic systems. The ruffled porphyrinate ring would aid the attack of the terminal oxygen of the hydroperoxide intermediate of heme oxygenase (HO) on the meso-carbon, and the large spin density at the meso-carbons of a d(xy) electron configuration heme suggests the possibility of a radical mechanism for HO. The dynamic equilibrium between the ruffled (d(xy)) and planar (d(pi)) conformers observed in the model complexes also suggests that a flexible heme binding cavity may be an important structural motif for heme oxygenase activity.  相似文献   

3.
Bonding interactions between the iron and the porphyrin macrocycle of five- and six-coordinate high-spin iron(III)-porphyrin complexes are analyzed within the framework of approximate density functional theory with the use of the quantitative energy decomposition scheme in combination with removal of the vacant pi orbitals of the porphyrin from the valence space. Although the relative extent of the iron-porphyrin interactions can be evaluated qualitatively through the spin population and orbital contribution analyses, the bond strengths corresponding to different symmetry representations can be only approximated quantitatively by the orbital interaction energies. In contrast to previous suggestions, there are only limited Fe --> P pi back-bonding interactions in high-spin iron(III)-porphyrin complexes. It is the symmetry-allowed bonding interaction between d(z)2 and a(2u) orbitals that is responsible for the positive pi spin densities at the meso-carbons of five-coordinate iron(III)-porphyrin complexes. Both five- and six-coordinate complexes show significant P --> Fe pi donation, which is further enhanced by the movement of the metal toward the in-plane position for six-coordinate complexes. These bonding characteristics correlate very well with the NMR data reported experimentally. The extraordinary bonding interaction between d(z)2 and a(2u) orbitals in five-coordinate iron(III)-porphyrin complexes offers a novel symmetry-controlled mechanism for spin transfer between the axial ligand sigma system and the porphyrin pi system and may be critical to the electron transfer pathways mediated by hemoproteins.  相似文献   

4.
Distinct spectral features at the Fe L-edge of the two compounds K3[Fe(CN)6] and K4[Fe(CN)6] have been identified and characterized as arising from contributions of the ligand pi orbitals due to metal-to-ligand back-bonding. In addition, the L-edge energy shifts and total intensities allow changes in the ligand field and effective nuclear charge to be determined. It is found that the ligand field term dominates the edge energy shift. The results of the experimental analysis were compared to BP86 DFT calculations. The overall agreement between the calculations and experiment is good; however, a larger difference in the amount of pi back-donation between Fe(II) and Fe(III) is found experimentally. The analysis of L-edge spectral shape, energy shift, and total intensity demonstrates that Fe L-edge X-ray absorption spectroscopy provides a direct probe of metal-to-ligand back-bonding.  相似文献   

5.
Methionine-80 (Met-80) in mitochondrial cytochrome c (cyt c) can be oxidized to the corresponding sulfoxide by reactive oxygen species, a reaction of potential biological significance. As an approach to investigating how oxidation of Met-80 would influence its interactions with heme iron, we have examined binding of 2-(methylthio)ethanol (MTE) and dimethyl sulfoxide (DMSO), models for the side chains of Met and Met(SO), respectively, to ferrous and ferric N-acetylmicroperoxidase-8 (AcMP8). We find that DMSO coordinates 1.2 kcal/mol less strongly to Fe(III)-AcMP8 than does MTE, although both ligands form low-spin complexes. Comparison of spectroscopic data for the DMSO complex of Fe(III)-AcMP8 with published data for the Met(SO)-80 form of ferric cyt c allows us to conclude that Met(SO)-80 does not coordinate to iron in the latter. DMSO coordinates to Fe(II)-AcMP8 1.3 kcal/mol more strongly than does MTE, whereas Met-80 and Met(SO)-80 are reported to have approximately equal affinity for Fe(II) in cyt c. This result suggests that the steric environment near the heme iron in cyt c discriminates against coordination of Met(SO)-80. Vacuum quantum chemical density functional theory calculations confirm the greater affinity of the sulfoxide and show that coordination via oxygen is strongly favored. Resonance Raman spectroscopic data indicate that the preference for coordination via oxygen is maintained in solution. The computational data further indicate that the DMSO complex derives significant enthalpic stabilization from pi back-bonding but that iron to sulfur pi back-bonding does not make a significant contribution to bonding in the thioether complex.  相似文献   

6.
Computational modeling offers a new insight about the electron transfer pathway in heme peroxidases. Available crystal structures have revealed an intriguing arrangement of the heme propionate side chains in heme-heme and heme-substrate complexes. By means of mixed quantum mechanical/molecular mechanics calculations, we study the involvement of these propionate groups into the substrate oxidation in ascorbate peroxidase and into the heme to heme electron transfer in bacterial cytochrome c peroxidase. By selectively turning on/off different quantum regions, we obtain the electron transfer pathway which directly involves the porphyrin ring and the heme propionates. Furthermore, in ascorbate peroxidase the presence of the substrate appears to be crucial for the activation of the electron transfer channel. The results might represent a general motif for electron transfer from/to the heme group and change our view for the propionate side chains as simple electrostatic binding anchors. We name the new mechanism "the propionate e-pathway".  相似文献   

7.
Previously proposed pi-charge/shift relationships have been applied to (13)C and (15)N shifts of the carbanions of 2-benzylazoles (thiazole, oxazole, and imidazole), their corresponding benzo-fused analogs, and bis(2-azolyl)methanes (azolyl groups as above). In this way it is possible to rank the pi electron-withdrawing power of these heterocycles in terms of charge demands c(X), a quantity representing the fraction of pi negative charge withdrawn (delocalized) by the ring. The results indicate that c(thiaz) > c(oxaz) > c(imidaz); furthermore, benzoazoles are more efficient than monocyclic systems in delocalizing the negative charge. The charge demand c(X) of imidazole is the smallest among the heteroaromatics so far considered, being even smaller than that of the phenyl ring. As a consequence, the negative charge in the anion of 2-benzyl-N-methylimidazole is predominantly transferred from the carbanionic carbon to the phenyl group rather than to the imidazolyl residue. The high double bond character of the bond linking the carbanionic and ipso phenyl ring carbons leads to room temperature (13)C shift anisochrony of the meta and meta' and ortho and ortho' positions of the phenyl ring. In all of the other cases, hindered rotation is observed at room temperature between the carbanionic carbon and position 2 of the heterocycle. A single set of resonances is presented by the bis(heteroaryl)methyl carbanions. pi-Charge/shift relationships allow for the accurate pi-charge mapping in these carbanionic systems, and the results point to considerable delocalization of the electron pair(s) of the oxygen and pyrrolic nitrogen atoms at position 1 in oxazole and imidazole toward the pyridic nitrogen at position 3 of the rings (in both the neutrals and the carbanionic species). On the contrary, not only does the sulfur atom in thiazole derivatives not delocalize any negative charge in the anions but it is barely involved in any pi-donation to the pyridic nitrogen atom at position 3 also in the neutrals.  相似文献   

8.
With the aim of understanding the nature of the interactions between organic molecules and metal surfaces, the adsorption of NH3 onto model Fe(110) and Fe(111) surfaces has been studied with use of the molecular orbital and density functional theories. B3LYP calculations have revealed that the on-top site is most suitable for adsorption of NH3 both on Fe(110) and on Fe(111). Mulliken population analysis in terms of the MO's of the two fragment systems suggested that electron delocalization from NH3 to the Fe surface should play a key role in the adsorption. Then, our transformation scheme of fragment orbitals has demonstrated that the electron delocalization is represented well only by a pair of interaction orbitals. The NH3 molecule provides the occupied interaction orbital bearing a close resemblance to the highest occupied (HO) MO, whereas the Fe surface prepares the paired unoccupied orbital that is localized at the adsorption site and overlaps in-phase with the orbital of NH3. Not only the lowest unoccupied (LU) MO but also other unoccupied MO's have been shown to participate significantly in the interaction. The reason the on-top site is the most preferable position for NH3 attack has been elucidated by investigating the interaction orbitals.  相似文献   

9.
Detailed Fe vibrational spectra have been obtained for the heme model complex [Fe(TPP)(CO)(1-MeIm)] using a new, highly selective and quantitative technique, Nuclear Resonance Vibrational Spectroscopy (NRVS). This spectroscopy measures the complete vibrational density of states for iron atoms, from which normal modes can be calculated via refinement of the force constants. These data and mode assignments can reveal previously undetected vibrations and are useful for validating predictions based on optical spectroscopies and density functional theory, for example. Vibrational modes of the iron porphyrin-imidazole compound [Fe(TPP)(CO)(1-MeIm)] have been determined by refining normal mode calculations to NRVS data obtained at an X-ray synchrotron source. Iron dynamics of this compound, which serves as a useful model for the active site in the six-coordinate heme protein, carbonmonoxy-myoglobin, are discussed in relation to recently determined dynamics of a five-coordinate deoxy-myoglobin model, [Fe(TPP)(2-MeHIm)]. For the first time in a six-coordinate heme system, the iron-imidazole stretch mode has been observed, at 226 cm(-)(1). The heme in-plane modes with large contributions from the nu(42), nu(49), nu(50), and nu(53) modes of the core porphyrin are identified. In general, the iron modes can be attributed to coupling with the porphyrin core, the CO ligand, the imidazole ring, and/or the phenyl rings. Other significant findings are the observation that the porphyrin ring peripheral substituents are strongly coupled to the iron doming mode and that the Fe-C-O tilting and bending modes are related by a negative interaction force constant.  相似文献   

10.
In many low-spin (S = 1/2) iron porphyrin derivatives, electron spin resonance (ESR) spectra indicate that one of the d(pi) orbitals of iron, either a d(xz) or d(yz), depending on the axial ligands of the porphyrin complex as well as their orientation, is essentially singly occupied; the unpaired electron is almost completely located at the metal. In contrast, nuclear magnetic resonance (NMR) and electron nuclear double resonance (ENDOR) spectroscopy convincingly show that a significant share of the unpaired electron is delocalized. This apparent contradiction is explained by the present density-functional-theory (DFT) calculations performed on a heme a model as well as on bis-imidazole-ligated iron porphyrin without substituents. The calculations show that the integrated spin density at the iron atom is nearly one, in agreement with the ESR measurements. However, significant areas with opposite (beta) spin are found along the Fe-N bond axes, thus evoking a need for additional alpha-spin density to be present in the porphyrin ring, ring substituents, and the axial ligands to keep the net amount of unpaired spin exactly one. The gross spin density, that is, the sum of unpaired alpha and beta spins, amounts to about 1.3 electrons. It seems that the degree to which alpha and beta spin dominate in different regions of the heme structure, as evidenced in these calculations, has not been previously observed.  相似文献   

11.
Reduction of nitro-aromatic compounds (NACs) proceeds through intermediates with a partial electron transfer into the nitro group from a reducing agent. To estimate the extent of such a transfer and, therefore, the activity of various model ferrous-containing reductants toward NAC degradation, the unrestricted density functional theory (DFT) in the basis of paired L?wdin-Amos-Hall orbitals has been applied to complexes of nitrobenzene (NB) and model Fe(II) hydroxides including cationic [FeOH]+, then neutral Fe(OH)2, and finally anionic [Fe(OH)3]-. Electron transfer is considered to be a process of unpairing electrons (without the change of total spin projection Sz) that reveals itself in a substantial spin contamination of the unrestricted solution. The unrestricted orbitals are transformed into localized paired orbitals to determine the orbital channels for a particular electron-transfer state and the weights of idealized charge-transfer and covalent electron structures. This approach allows insight into the electronic structure and bonding of the {Fe(PhNO2)}6 unit (according to Enemark and Feltham notation) to be gained using model nitrobenzene complexes. The electronic structure of this unit can be expressed in terms of pi-type covalent bonding [Fe+2(d6, S = 2) - PhNO2(S = 0)] or charge-transfer configuration [Fe+3(d5, S = 5/2) - {PhNO2}- ((pi*)1, S = 1/2)].  相似文献   

12.
The 1H NMR spectra of iron(III) 5-ethynyl-10,15,20-tri(p-tolyl)porphyrin [(ETrTP)Fe(III)X(n)], iron(III) 5-(phenylethynyl)-10,15,20-tri(p-tolyl)porphyrin [(PETrTP)Fe(III)X(n)], iron(III) 5-(phenylbutadiynyl)-10,15,20-tri(p-tolyl)porphyrin [(PBTrTP)Fe(III)X(n)], iron(III) 5,10,15,20-tetra(phenylethynyl)porphyrin [(TPEP)Fe(III)X(n)], iron(III) 1,4-bis-[10,15,20-tri(p-tolyl)porphyrin-5-yl]-1,3-butadiyne {[(TrTP)Fe(III)X(n)]2 B}, and 5,10,15-triphenylporphyrin [(TrPP)Fe(III)X(n)] have been studied to elucidate the impact of meso-ethynyl substitution on the electronic structure and spin density distribution of high-spin (X = Cl-, n = 1) and low-spin (X = CN-, n = 2) derivatives. The meso substituents, i.e., ethynyl, phenylethynyl, and phenylbutadiynyl, provided insight into the efficiency of spin density delocalization along structural elements that are typically applied to transmit electronic effects along multipart polyporphyrinic systems. The positive spin density localized at the meso-carbon of high-spin iron(III) ethynylporphyrins is effectively delocalized along the ethyne or butadiyne fragment as illustrated by the comparison of isotropic shifts of C(meso)-H and -CC-H determined for (TrPP)Fe(III)Cl (-82.6 ppm, 293 K) and (ETrTP)Fe(III)Cl (-49.5 ppm, 298 K). The replacement of the ethynyl hydrogen by phenyl or phenylethynyl provided evidence for the pi spin density distribution around the introduced phenyl ring. An analysis of the isotropic shifts for the low-spin bis-cyanide iron(III) porphyrins series reveals the analogous mechanism of spin density transfer. Treatment of high-spin [(TrTP)Fe(III)Cl]2 B with a base resulted in formation of the cyclic [(TrTP)Fe(III)OFe(III)(TrTP)B]2 complex linked by two mu-oxo bridges. (TPEP)H2 has been characterized by X-ray crystallography as a porphyrin dication where two molecules of trifluoroacetic acid associate with two coordinated trifluoroacetate anions. The X-ray structure of bis-tetrahydrofuran 1,4-bis[10,15,20-tri(p-tolyl)porphyrinatozinc(II)-5-yl]-1,3-butadiyne complex {[(TrTP)Zn(II)(THF)]2 B} reveals two parallel, non-coplanar [(TrTP)Zn(THF)] subunits linked by the linear butadiyne moiety.  相似文献   

13.
Paulat F  Lehnert N 《Inorganic chemistry》2008,47(11):4963-4976
High-spin (hs) ferric heme centers occur in the catalytic or redox cycles of many metalloproteins and exhibit very complicated magnetic circular dichroism (MCD) and UV-vis absorption spectra. Therefore, detailed assignments of the MCD spectra of these species are missing. In this study, the electronic spectra (MCD and UV-vis) of the five-coordinate hs ferric model complex [Fe(TPP)(Cl)] are analyzed and assigned for the first time. A correlated fit of the absorption and low-temperature MCD spectra of [Fe(TPP)(Cl)] lead to the identification of at least 20 different electronic transitions. The assignments of these spectra are based on the following: (a) variable temperature and variable field saturation data, (b) time-dependent density functional theory calculations, (c) MCD pseudo A-terms, and (d) correlation to resonance Raman (rRaman) data to validate the assignments. From these results, a number of puzzling questions about the electronic spectra of [Fe(TPP)(Cl)] are answered. The Soret band in [Fe(TPP)(Cl)] is split into three components because one of its components is mixed with the porphyrin A2u72-->Eg82/83 (pi-->pi*) transition. The broad, intense absorption feature at higher energy from the Soret band is due to one of the Soret components and a mixed sigma and pi chloro to iron CT transition. The high-temperature MCD data allow for the identification of the Q v band at 20 202 cm(-1), which corresponds to the C-term feature at 20 150 cm(-1). Q is not observed but can be localized by correlation to rRaman data published before. Finally, the low energy absorption band around 650 nm is assigned to two P-->Fe charge transfer transitions, one being the long sought after A1u(HOMO)-->d pi transition.  相似文献   

14.
Porphyrin architectures bearing a hydrogen-bonding scaffold have been synthesized. The H-bond pendant allows proton-coupled electron transfer (PCET) to be utilized as a vehicle for effecting catalytic O-O bond activation chemistry. Suzuki cross-coupling reactions provide a modular synthetic strategy for the attachment of porphyrins to a rigid xanthene or dibenzofuran pillar bearing the H-bond pendant. The resulting HPX (hanging porphyrin xanthene) and HPD (hanging porphyrin dibenzofuran) systems permit both the orientation and acid-base properties of the hanging H-bonding group to be controlled. Comparative reactivity studies for the catalase-like disproportionation of hydrogen peroxide and the epoxidation of olefins by the HPX and HPD platforms with acid and ester hanging groups reveal that the introduction of a proton-transfer network, properly oriented to a redox-active platform, can orchestrate catalytic O-O bond activation. For the catalase and epoxidation reaction types, a marked reactivity enhancement is observed for the xanthene-bridged platform appended with a pendant carboxylic acid group, establishing that this approach can yield superior catalysts to analogues that do not control both proton and electron inventories.  相似文献   

15.
Assessment of the cyclic electron delocalization of the oxocarbon dianions, C(n)()O(n)()(2)(-) and their neutral counterparts C(n)()O(n)() (n = 3-6), by means of structural, energetic, and magnetic criteria, shows that C(3)O(3)(2)(-) is doubly aromatic (both sigma and pi cyclic electron delocalization), C(4)O(4)(2)(-) is moderately aromatic, but C(5)O(5)(2)(-), as well as C(6)O(6)(2)(-), are less so. Localized orbital contributions, computed by the individual gauge for localized orbitals method (IGLO), to the nucleus-independent chemical shifts (NICS) allow pi effects to be disected from the sigma single bonds and other influences. The C-C(pi) contribution to (NICS(0,pi) (i.e., at the center of the ring) in oxocarbon dianions decreases with ring size but shows little ring size effect at points 1.0 A above the ring. On the basis of the same criteria, C(4)O(4) exhibits cyclic electron delocalization due to partial occupancy of the sigma CC bonds. However, the dissociation energies of all the neutral oxocarbons, C(n)()O(n)(), are highly exothermic.  相似文献   

16.
Three biomimetic models for the binuclear Fe/Cu (heme/trisimidazole) active site of terminal oxidases, such as cytochrome c oxidase and related enzymes, have been prepared. Based upon a tetrakis(aminophenyl)porphyrin core, these models possess a single covalently linked imidazole-bearing tail on one side of the porphyrin and three imidazole "pickets" on the opposite side of the porphyrin ring. Three different imidazole picket motifs are characterized in free base, Fe, Zn, Fe/Cu, and Zn/Cu forms. A combination of NMR, EPR, and IR demonstrates that, for the N-methylimidazole systems studied, the distal Cu is bound within the trisimidazole environment in the reduced (Cu(I)) and oxidized (Cu(II)) forms. The imidazole picket substitution pattern and state of metalation have significant influence on the interaction of these compounds with CO. For imidazole picket systems containing NH groups, intramolecular H bonds compete with Cu(I) coordination of the N donors.  相似文献   

17.
In the present work, we analyze the pi-electronic delocalization in a series of annulenes and their dications and dianions by using electron delocalization indices calculated in the framework of the quantum theory of atoms in molecules. The aim of our study is to discuss the Hückel's 4n + 2 rule from the viewpoint of pi-electronic delocalization. Our results show that there is an important increase of electronic delocalization (of about 1 e) when going from antiaromatic 4n pi systems to aromatic (4n + 2)pi systems. Less clear is the change in pi-electronic delocalization when we move from a (4n + 2)pi-aromatic to a 4n pi-antiaromatic species by adding or removing a pair of electrons.  相似文献   

18.
We present ab-initio density functional theory studies on the interactions of small biologically active molecules, namely NO, CO, O(2), H(2)O, and NO(2) (-) with the full-size heme group. Our results show that the small molecule-iron bond is the strongest in carbonyl and the weakest in nitrite system. Trans influence induced by NO binding to the five-coordinate heme complex is shown. Nitric oxide in the resulting complex might be described as NO(-). The differences among the small ligands of XO type (CO, NO, O(2)), and their distant chemical behavior from H(2)O and NO(2) (-) ligands in binding to the Fe(II) ion, are shown. Moreover, the role of the heme ring as a reservoir of electrons in the studied complexes is invoked. The analysis of the parameters defining the iron-histidine bond indicates that this bond is longer and weaker in nitrosyl and carbonyl complexes than in the other systems. Our findings support the proposed mechanism of soluble guanylate cyclase (sGC) activation and suggest that the first step of sGC activation by CO may be the same as during the activation by NO. Obtained results are then compared with the data concerning smaller model of the heme, the porphyrin complexes, available in the literature.  相似文献   

19.
The oxoiron(IV) porphyrin π-cation radical complex (compound I) has been identified as the key reactive intermediate of several heme enzymes and synthetic heme complexes. The redox properties of this reactive species are not yet well understood. Here, we report the results of a systematic study of the electrochemistry of oxoiron(IV) porphyrin π-cation radical complexes with various porphyrin structures and axial ligands in organic solvents at low temperatures. The cyclic voltammogram of (TMP)Fe(IV)O, (TMP = 5,10,15,20-tetramesitylporphyrinate), exhibits two quasi-reversible redox waves at E(1/2) = 0.88 and 1.18 V vs SCE in dichloromethane at -60 °C. Absorption spectral measurements for electrochemical oxidation at controlled potential clearly indicated that the first redox wave results from the (TMP)Fe(IV)O/[(TMP(+?))Fe(IV)O](+) couple. The redox potential for the (TMP)Fe(IV)O/[(TMP(+?))Fe(IV)O](+) couple undergoes a positive shift upon coordination of an anionic axial ligand but a negative shift upon coordination of a neutral axial ligand (imidazole). The negative shifts of the redox potential for the imidazole complexes are contrary to their high oxygenation activity. On the other hand, the electron-withdrawing effect of the meso-substituent shifts the redox potential in a positive direction. Comparison of the measured redox potentials and reaction rate constants for epoxidation of cyclooctene and demethylation of N,N-dimethylanilines enable us to discuss the details of the electron transfer process from substrates to the oxoiron(IV) porphyrin π-cation radical complex in the oxygenation mechanisms.  相似文献   

20.
通过建立电子转移过程的活化模型和重组模型, 提出了用量子化学从头算方法研究电子转移过程内层重组能和活化能的新方法. 在UMP26/311G水平上获得了5对过渡金属水合离子体系M(H  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号