首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
From June 18–19, 2012, the Australian Synchrotron hosted an infrared microscopy beamline data analysis workshop designed to introduce participants to working with resonant Mie scattering (RMieS) corrections to remove baseline distortions in Fourier transform IR spectra from biological single cells and tissue sections. Mie scattering has been a barrier to the advancement of IR microspectroscopy in biological research for many years, but recently developed correction algorithms have opened up new horizons in analytical interpretations.  相似文献   

2.
At the vacuum ultraviolet (VUV) free electron laser in Hamburg (FLASH) an infrared (IR) beamline is being built to allow novel pump-and-probe experiments combining coherent IR pulses with the FEL radiation in the VUV spectral range. It will provide useful IR radiation generated by a purpose built undulator over the wavelength range from 200 μm to 10 μm and possibly even shorter. The commissioning of the beamline has started this summer and first light will be delivered to the experimental hall by autumn 2007. Another important application of the beamline will be electron diagnostics of the longitudinal charge distribution of the electron bunches.  相似文献   

3.
The wings of some insects, such as cicadae, have been reported to possess a number of interesting and unusual qualities such as superhydrophobicity, anisotropic wetting and antibacterial properties. Here, the chemical composition of the wings of the Clanger cicada (Psaltoda claripennis) were characterized using infrared (IR) microspectroscopy. In addition, the data generated from two separate synchrotron IR facilities, the Australian Synchrotron Infrared Microspectroscopy beamline (AS‐IRM) and the Synchrotron Radiation Center (SRC), University of Wisconsin‐Madison, IRENI beamline, were analysed and compared. Characteristic peaks in the IR spectra of the wings were assigned primarily to aliphatic hydrocarbon and amide functionalities, which were considered to be an indication of the presence of waxy and proteinaceous components, respectively, in good agreement with the literature. Chemical distribution maps showed that, while the protein component was homogeneously distributed, a significant degree of heterogeneity was observed in the distribution of the waxy component, which may contribute to the self‐cleaning and aerodynamic properties of the cicada wing. When comparing the data generated from the two beamlines, it was determined that the SRC IRENI beamline was capable of producing higher‐spatial‐resolution distribution images in a shorter time than was achievable at the AS‐IRM beamline, but that spectral noise levels per pixel were considerably lower on the AS‐IRM beamline, resulting in more favourable data where the detection of weak absorbances is required. The data generated by the two complementary synchrotron IR methods on the chemical composition of cicada wings will be immensely useful in understanding their unusual properties with a view to reproducing their characteristics in, for example, industry applications.  相似文献   

4.
In this contribution we up-to-date the status of the PRESS-MAG-O device, a new instrument under commissioning at the INFN designed to perform magnetic and spectroscopic experiments on samples under extreme conditions. The system has been designed to work at SINBAD, the IR synchrotron radiation beamline operational at DAΦNE. The instrument, that is the result of a significant R&D, will allow performing concurrent high harmonic ac magnetic susceptibility measurements and magneto-optic experiments on a sample under high pressure, with a variable DC magnetic field in a wide temperature range. The vacuum vessel has been designed with four crossing windows to allow optical measurements in the transmission geometry on the sample loaded inside a Diamond Anvil Cell. A new superconducting miniaturized micro-SQUID gradiometer has been also developed to detect the low magnetic signal of the sample and a customized optical system has also been designed to perform IR synchrotron radiation experiments.  相似文献   

5.
The X‐ray Powder Diffraction (XPD) beamline at the National Synchrotron Light Source II is a multi‐purpose high‐energy X‐ray diffraction beamline with high throughput and high resolution. The beamline uses a sagittally bent double‐Laue crystal monochromator to provide X‐rays over a large energy range (30–70 keV). In this paper the optical design and the calculated performance of the XPD beamline are presented. The damping wiggler source is simulated by the SRW code and a filter system is designed to optimize the photon flux as well as to reduce the heat load on the first optics. The final beamline performance under two operation modes is simulated using the SHADOW program. For the first time a multi‐lamellar model is introduced and implemented in the ray tracing of the bent Laue crystal monochromator. The optimization and the optical properties of the vertical focusing mirror are also discussed. Finally, the instrumental resolution function of the XPD beamline is described in an analytical method.  相似文献   

6.
Advances in resonant inelastic X‐ray scattering (RIXS) have come in lockstep with improvements in energy resolution. Currently, the best energy resolution at the Ir L3‐edge stands at ~25 meV, which is achieved using a diced Si(844) spherical crystal analyzer. However, spherical analyzers are limited by their intrinsic reflection width. A novel analyzer system using multiple flat crystals provides a promising way to overcome this limitation. For the present design, an energy resolution at or below 10 meV was selected. Recognizing that the angular acceptance of flat crystals is severely limited, a collimating element is essential to achieve the necessary solid‐angle acceptance. For this purpose, a laterally graded, parabolic, multilayer Montel mirror was designed for use at the Ir L3‐absorption edge. It provides an acceptance larger than 10 mrad, collimating the reflected X‐ray beam to smaller than 100 µrad, in both vertical and horizontal directions. The performance of this mirror was studied at beamline 27‐ID at the Advanced Photon Source. X‐rays from a diamond (111) monochromator illuminated a scattering source of diameter 5 µm, generating an incident beam on the mirror with a well determined divergence of 40 mrad. A flat Si(111) crystal after the mirror served as the divergence analyzer. From X‐ray measurements, ray‐tracing simulations and optical metrology results, it was established that the Montel mirror satisfied the specifications of angular acceptance and collimation quality necessary for a high‐resolution RIXS multi‐crystal analyzer system.  相似文献   

7.
At the third generation synchrotron light source Shanghai Synchrotron Radiation Facility (SSRF), the first infrared beamline BL01B has been successfully constructed. The infrared beamline collects both bending magnet and edge radiation. A brief introduction of the infrared beamline design has been given in this article. The infrared microspectroscopy station is equipped with a Nicolet 6700 FTIR spectrometer and a Nicolet Continuum Microscope. The flux at the entrance of the FTIR spectrometer, the intensity profile, the signal to noise ratio (SNR) with different apertures, and the focused spot size of the infrared microspectroscopy station have been measured. The performances with synchrotron radiation infrared source and internal globar source have been compared. The results indicate that the infrared microspectroscopy station at SSRF has the ability of analysis samples in a small area with diffraction limited spatial resolution.  相似文献   

8.
A microfocus X‐ray fluorescence spectroscopy beamline (BL‐16) at the Indian synchrotron radiation facility Indus‐2 has been constructed with an experimental emphasis on environmental, archaeological, biomedical and material science applications involving heavy metal speciation and their localization. The beamline offers a combination of different analytical probes, e.g. X‐ray fluorescence mapping, X‐ray microspectroscopy and total‐external‐reflection fluorescence characterization. The beamline is installed on a bending‐magnet source with a working X‐ray energy range of 4–20 keV, enabling it to excite K‐edges of all elements from S to Nb and L‐edges from Ag to U. The optics of the beamline comprises of a double‐crystal monochromator with Si(111) symmetric and asymmetric crystals and a pair of Kirkpatrick–Baez focusing mirrors. This paper describes the performance of the beamline and its capabilities with examples of measured results.  相似文献   

9.
Synchrotron infrared beamlines are powerful tools on which to perform spectroscopy on microscopic length scales but require working with large bending‐magnet source apertures in order to provide intense photon beams to the experiments. Many infrared beamlines use a single toroidal‐shaped mirror to focus the source emission which generates, for large apertures, beams with significant geometrical aberrations resulting from the shape of the source and the beamline optics. In this paper, an optical layout optimized for synchrotron infrared beamlines, that removes almost totally the geometrical aberrations of the source, is presented and analyzed. This layout is already operational on the IR beamline of the Brazilian synchrotron. An infrared beamline design based on a SOLEIL bending‐magnet source is given as an example, which could be useful for future IR beamline improvements at this facility.  相似文献   

10.
Aiming at advancing storage‐ring‐based ultrafast X‐ray science, over the past few years many upgrades have been undertaken to continue improving beamline performance and photon flux at the Femtoslicing facility at BESSY II. In this article the particular design upgrade of one of the key optical components, the zone‐plate monochromator (ZPM) beamline, is reported. The beamline is devoted to optical pump/soft X‐ray probe applications with 100 fs (FWHM) X‐ray pulses in the soft X‐ray range at variable polarization. A novel approach consisting of an array of nine off‐axis reflection zone plates is used for a gapless coverage of the spectral range between 410 and 1333 eV at a designed resolution of EE = 500 and a pulse elongation of only 30 fs. With the upgrade of the ZPM the following was achieved: a smaller focus, an improved spectral resolution and bandwidth as well as excellent long‐term stability. The beamline will enable a new class of ultrafast applications with variable optical excitation wavelength and variable polarization.  相似文献   

11.
The IMCA‐CAT bending‐magnet beamline was upgraded with a collimating mirror in order to achieve the energy resolution required to conduct high‐quality multi‐ and single‐wavelength anomalous diffraction (MAD/SAD) experiments without sacrificing beamline flux throughput. Following the upgrade, the bending‐magnet beamline achieves a flux of 8 × 1011 photons s?1 at 1 Å wavelength, at a beamline aperture of 1.5 mrad (horizontal) × 86 µrad (vertical), with energy resolution (limited mostly by the intrinsic resolution of the monochromator optics) δE/E = 1.5 × 10?4 (at 10 kV). The beamline operates in a dynamic range of 7.5–17.5 keV and delivers to the sample focused beam of size (FWHM) 240 µm (horizontally) × 160 µm (vertically). The performance of the 17‐BM beamline optics and its deviation from ideally shaped optics is evaluated in the context of the requirements imposed by the needs of protein crystallography experiments. An assessment of flux losses is given in relation to the (geometric) properties of major beamline components.  相似文献   

12.
Beijing Synchrotron Radiation Facility is a partly dedicated synchrotron radiation source operated in either parasitic or dedicated mode. The 3B1A beamline, extracted from a bending magnet, was originally designed as a soft x-ray beamline for submicro x-ray lithography with critical lateral size just below 1μm in 1988 and no change has been made since it was built. But later the required resolution of x-ray lithography has changed from sub-micrometre to the nanometre in the critical lateral size. This beamline can longer more meet the requirement for x-ray nano lithography and has to be modified to fit the purpose. To upgrade the design of the 3B1A beamline for x-ray nano lithography, a mirror is used to reflect and scan the x-ray beam for the nano lithography station, but the mirror's grazing angle is changed to 27.9mrad in the vertical direction, and the convex curve needs to be modified to fit the change; the tiny change of mirror scanning angle is firstly considered to improve the uniformity of the x-ray spot on the wafer by controlling the convex curve.  相似文献   

13.
IRENI (infrared environmental imaging) is a recently commissioned Fourier transform infrared (FTIR) chemical imaging beamline at the Synchrotron Radiation Center in Madison, WI, USA. This novel beamline extracts 320 mrad of radiation, horizontally, from one bending magnet. The optical transport separates and recombines the beam into 12 parallel collimated beams to illuminate a commercial FTIR microspectrometer (Bruker Hyperion 3000) equipped with a focal plane array detector where single pixels in the detector image a projected sample area of either 0.54×0.54 μm2 or 2×2 μm2, depending in the measurement geometry. The 12 beams are partially overlapped and defocused, similar to wide-field microscopy, homogeneously illuminating a relatively large sample area compared to single-beam arrangements. Both transmission and reflection geometries are used to examine a model cross section from a layered polymer material. The compromises for sample preparation and measurement strategies are discussed, and the chemical composition and spatial definition of the layers are distinguished in chemical images generated from data sets. Deconvolution methods that may allow more detailed data analysis are also discussed.  相似文献   

14.
A simple and compact parallelogram mirror drive based on flexure pivots suitable for intermediate resolution Fourier transform spectroscopy is presented. The system permits 12 mm of mirror translation with a residual tilt of less than ±0.4 mrad in the horizontal plane and ±0.2 mrad in the vertical plane. A system prototype was built and fully characterized for a Fourier transform spectrometer operating on a stratospheric balloon.  相似文献   

15.
太赫兹成像准光学系统设计   总被引:2,自引:1,他引:1       下载免费PDF全文
为了设计出适用于太赫兹波段成像的光学系统,综合分析了各种成像系统的特点,其中离轴三反射式光学系统具有独特的优势。通过对离轴三反射式光学系统的设计原理、设计方法和步骤的详细介绍,利用ZEMAX光学设计软件,通过编写简单的ZPL宏指令以及光阑和视场离轴,设计了工作在太赫兹波段、入瞳大小250 mm、瞬时视场1 mrad、焦距800 mm、F数3.2的系统,实现了可用于太赫兹波段无中心遮拦的离轴三反射式准光学成像系统设计。  相似文献   

16.
苏宙平  楼祺洪  董景星  周军  魏运荣 《物理学报》2007,56(10):5831-5834
根据波导模理论,推导了高功率激光二极管阵列的远场分布,根据其分布特点,设计了一种离轴外腔.运用这种外腔,在工作电流为17A时,光束的束宽积从自由运转时的1100mm·mrad减小到128mm·mrad,二极管阵列的光束质量提高了8.5倍左右,输出功率约为自由运转时的75%.  相似文献   

17.
The authors report infrared near-field spectroscopy using synchrotron radiation at BL43IR, SPring-8 in the finger print region. At the microspectroscopy station, the infrared synchrotron radiation beam is focused on a cantilever probe with a 3 μm square aperture. A comb-shaped Au electrode with the width of 3 μm and the distance of 3 μm is used for the reflection measurement. The Au electrodes can be resolved at 650 cm−1 and the resolution is estimated to be λ/5.  相似文献   

18.
瞬态光学渡越辐射测量系统的设计   总被引:1,自引:0,他引:1  
针对在神龙一号上进行电子束瞬态发射度的测量要求,建立了一套利用光学渡越辐射原理进行电子束发射度测量的瞬态测量系统,该测量系统瞬态测量时间最快约10ns,并获得了神龙一号发射的脉冲电子束的束斑及发散角,典型值分别为约9mm和10.5mrad,实现了电子束发散角和束斑的同时测量,为在神龙一号上进行的时间分辨测量系统的研究奠定了基础。  相似文献   

19.
In order to deliver VUV (vacuum ultraviolet) photons under atmospheric pressure conditions, a differential pumping system has been built on the DISCO beamline at the SOLEIL synchrotron radiation facility. The system is made of four stages and is 840 mm long. The conductance‐limiting body has been designed to allow practicable optical alignment. VUV transmission of the system was tested under air, nitrogen, argon and neon, and photons could be delivered down to 60 nm (20 eV).  相似文献   

20.
An upgraded version of the sample changer `CATS' (Cryogenic Automated Transfer System) that was developed on the FIP‐BM30A beamline at the ESRF is presented. At present, CATS is installed at SLS (three systems), BESSY (one system), DLS (two systems) and APS (four systems for the LSCAT beamline). It consists mainly of an automated Dewar with an assortment of specific grippers designed to obtain a fast and reliable mounting/dismounting rate without jeopardizing the flexibility of the system. The upgraded system has the ability to manage any sample standard stored in any kind of puck.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号