首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
In this paper, we present a new trust region algorithm for a nonlinear bilevel programming problem by solving a series of its linear or quadratic approximation subproblems. For the nonlinear bilevel programming problem in which the lower level programming problem is a strongly convex programming problem with linear constraints, we show that each accumulation point of the iterative sequence produced by this algorithm is a stationary point of the bilevel programming problem.  相似文献   

2.
In this paper we study the proximal point algorithm (PPA) based prediction-correction (PC) methods for monotone variational inequalities. Each iteration of these methods consists of a prediction and a correction. The predictors are produced by inexact PPA steps. The new iterates are then updated by a correction using the PPA formula. We present two profit functions which serve two purposes: First we show that the profit functions are tight lower bounds of the improvements obtained in each iteration. Based on this conclusion we obtain the convergence inexactness restrictions for the prediction step. Second we show that the profit functions are quadratically dependent upon the step lengths, thus the optimal step lengths are obtained in the correction step. In the last part of the paper we compare the strengths of different methods based on their inexactness restrictions.  相似文献   

3.
In this paper,a new globally convergent algorithm for nonlinear optimization prablems with equality and inequality constraints is presented. The new algorithm is of SQP type which determines a search direction by solving a quadratic programming subproblem per itera-tion. Some revisions on the quadratic programming subproblem have been made in such a way that the associated constraint region is nonempty for each point x generated by the algorithm, i. e. , the subproblems always have optimal solutions. The new algorithm has two important properties. The computation of revision parameter for guaranteeing the consistency of quadratic sub-problem and the computation of the second order correction step for superlinear convergence use the same inverse of a matrix per iteration, so the computation amount of the new algorithm will not be increased much more than other SQP type algorithms; Another is that the new algorithm can give automatically a feasible point as a starting point for the quadratic subproblems pe  相似文献   

4.
AbstractAn interior trust-region-based algorithm for linearly constrained minimization problems is proposed and analyzed. This algorithm is similar to trust region algorithms for unconstrained minimization: a trust region subproblem on a subspace is solved in each iteration. We establish that the proposed algorithm has convergence properties analogous to those of the trust region algorithms for unconstrained minimization. Namely, every limit point of the generated sequence satisfies the Krush-Kuhn-Tucker (KKT) conditions and at least one limit point satisfies second order necessary optimality conditions. In addition, if one limit point is a strong local minimizer and the Hessian is Lipschitz continuous in a neighborhood of that point, then the generated sequence converges globally to that point in the rate of at least 2-step quadratic. We are mainly concerned with the theoretical properties of the algorithm in this paper. Implementation issues and adaptation to large-scale problems will be addressed in a  相似文献   

5.
The alternating direction method of multipliers(ADMM)is a benchmark for solving convex programming problems with separable objective functions and linear constraints.In the literature it has been illustrated as an application of the proximal point algorithm(PPA)to the dual problem of the model under consideration.This paper shows that ADMM can also be regarded as an application of PPA to the primal model with a customized choice of the proximal parameter.This primal illustration of ADMM is thus complemental to its dual illustration in the literature.This PPA revisit on ADMM from the primal perspective also enables us to recover the generalized ADMM proposed by Eckstein and Bertsekas easily.A worst-case O(1/t)convergence rate in ergodic sense is established for a slight extension of Eckstein and Bertsekas’s generalized ADMM.  相似文献   

6.
LIMITED MEMORY BFGS METHOD FOR NONLINEAR MONOTONE EQUATIONS   总被引:2,自引:0,他引:2  
In this paper, we propose an algorithm for solving nonlinear monotone equations by combining the limited memory BFGS method (L-BFGS) with a projection method. We show that the method is globally convergent if the equation involves a Lipschitz continuous monotone function. We also present some preliminary numerical results.  相似文献   

7.
陈俊  孙文瑜 《东北数学》2008,24(1):19-30
In this paper, we combine the nonmonotone and adaptive techniques with trust region method for unconstrained minimization problems. We set a new ratio of the actual descent and predicted descent. Then, instead of the monotone sequence, the nonmonotone sequence of function values are employed. With the adaptive technique, the radius of trust region △k can be adjusted automatically to improve the efficiency of trust region methods. By means of the Bunch-Parlett factorization, we construct a method with indefinite dogleg path for solving the trust region subproblem which can handle the indefinite approximate Hessian Bk. The convergence properties of the algorithm are established. Finally, detailed numerical results are reported to show that our algorithm is efficient.  相似文献   

8.
In this paper, we propose a theoretical framework of an infeasible interior-point algorithm for solving monotone linear cornplementarity problems over symmetric cones (SCLCP). The new algorithm gets Newton-like directions from the Chen-Harker-Kanzow-Smale (CHKS) smoothing equation of the SCLCP. It possesses the following features: The starting point is easily chosen; one approximate Newton step is computed and accepted at each iteration; the iterative point with unit stepsize automatically remains in the neighborhood of central path; the iterative sequence is bounded and possesses (9(rL) polynomial-time complexity under the monotonicity and solvability of the SCLCP.  相似文献   

9.
Typical solution methods for solving mixed complementarity problems either generatefeasible iterates but have to solve relatively complicated subproblems such as quadraticprograms or linear complementarity problems,or(those methods)have relatively simplesubproblems such as system of linear equations but possibly generate infeasible iterates.In this paper,we propose a new Newton-type method for solving monotone mixed com-plementarity problems,which ensures to generate feasible iterates,and only has to solve asystem of well-conditioned linear equations with reduced dimension per iteration.Withoutany regularity assumption,we prove that the whole sequence of iterates converges to a so-lution of the problem(truly globally convergent).Furthermore,under suitable conditions,the local superlinear rate of convergence is also established.  相似文献   

10.
In this paper, we propose a new branch and bound algorithm for the solution of large scale separable concave programming problems. The largest distance bisection (LDB) technique is proposed to divide rectangle into sub-rectangles when one problem is branched into two subproblems. It is proved that the LDB method is a normal rectangle subdivision(NRS). Numerical tests on problems with dimensions from 100 to 10000 show that the proposed branch and bound algorithm is efficient for solving large scale separable concave programming problems, and convergence rate is faster than ω-subdivision method.  相似文献   

11.
《Optimization》2012,61(5):505-524
Based on the classical proximal point algorithm (PPA), some PPA-based numerical algorithms for general variational inequalities (GVIs) have been developed recently. Inspired by these algorithms, in this article we propose some proximal algorithms for solving linearly constrained GVIs (LCGVIs). The resulted subproblems are regularized proximally, and they are allowed to be solved either exactly or approximately.  相似文献   

12.
徐海文 《计算数学》2012,34(1):93-102
邻近点算法(PPA)是一类求解凸优化问题的经典算法, 但往往需要精确求解隐式子问题,于是近似邻近点算法(APPA)在满足一定的近似规则下非精确求解PPA的子问题, 降低了求解难度. 本文利用近似规则的历史信息和随机数扩张预测校正步产生了两个方向, 通过随机数组合两个方向获得了一类凸优化的混合下降算法.在近似规则满足的情况下, 给出了混合下降算法的收敛性证明. 一系列的数值试验表明了混合下降算法的有效性和效率性.  相似文献   

13.
为了求解单调变分不等式,建立了一个新的误差准则,并且在不需要增加诸如投影,外梯度等步骤的情况下证明了邻近点算法的收敛性.  相似文献   

14.
Proximal point algorithms (PPA) are attractive methods for monotone variational inequalities. The approximate versions of PPA are more applicable in practice. A modified approximate proximal point algorithm (APPA) presented by Solodov and Svaiter [Math. Programming, Ser. B 88 (2000) 371–389] relaxes the inexactness criterion significantly. This paper presents an extended version of Solodov–Svaiter's APPA. Building the direction from current iterate to the new iterate obtained by Solodov–Svaiter's APPA, the proposed method improves the profit at each iteration by choosing the optimal step length along this direction. In addition, the inexactness restriction is relaxed further. Numerical example indicates the improvement of the proposed method.  相似文献   

15.
This paper is devoted to the study of the proximal point algorithm for solving monotone second-order cone complementarity problems. The proximal point algorithm is to generate a sequence by solving subproblems that are regularizations of the original problem. After given an appropriate criterion for approximate solutions of subproblems by adopting a merit function, the proximal point algorithm is verified to have global and superlinear convergence properties. For the purpose of solving the subproblems efficiently, we introduce a generalized Newton method and show that only one Newton step is eventually needed to obtain a desired approximate solution that approximately satisfies the appropriate criterion under mild conditions. Numerical comparisons are also made with the derivative-free descent method used by Pan and Chen (Optimization 59:1173–1197, 2010), which confirm the theoretical results and the effectiveness of the algorithm.  相似文献   

16.
线性约束的凸优化问题和鞍点问题的一阶最优性条件是一个单调变分不等式. 在变分不等式框架下求解这些问题, 选取适当的矩阵G, 采用G- 模下的PPA 算法, 会使迭代过程中的子问题求解变得相当容易. 本文证明这类定制的PPA 算法的误差界有1/k 的收敛速率.  相似文献   

17.
Forcing strong convergence of proximal point iterations in a Hilbert space   总被引:1,自引:1,他引:0  
This paper concerns with convergence properties of the classical proximal point algorithm for finding zeroes of maximal monotone operators in an infinite-dimensional Hilbert space. It is well known that the proximal point algorithm converges weakly to a solution under very mild assumptions. However, it was shown by Güler [11] that the iterates may fail to converge strongly in the infinite-dimensional case. We propose a new proximal-type algorithm which does converge strongly, provided the problem has a solution. Moreover, our algorithm solves proximal point subproblems inexactly, with a constructive stopping criterion introduced in [31]. Strong convergence is forced by combining proximal point iterations with simple projection steps onto intersection of two halfspaces containing the solution set. Additional cost of this extra projection step is essentially negligible since it amounts, at most, to solving a linear system of two equations in two unknowns. Received January 6, 1998 / Revised version received August 9, 1999?Published online November 30, 1999  相似文献   

18.
近似邻近点算法是求解单调变分不等式的一个有效方法,该算法通过解决一系列强单调子问题,产生近似邻近点序列来逼近变分不等式的解,而外梯度算法则通过每次迭代中增加一个投影来克服一般投影算法限制太强的缺点,但它们均未能改变迭代步骤中不规则闭凸区域上投影难计算的问题.于是,本文结合外梯度算法的迭代格式,构造包含原投影区域的半空间,将投影建立在半空间上,简化了投影的求解过程,并对新的邻近点序列作相应限制,使得改进的算法具有较好的收敛性.  相似文献   

19.
We study various error measures for approximate solution of proximal point regularizations of the variational inequality problem, and of the closely related problem of finding a zero of a maximal monotone operator. A new merit function is proposed for proximal point subproblems associated with the latter. This merit function is based on Burachik-Iusem-Svaiter’s concept of ε-enlargement of a maximal monotone operator. For variational inequalities, we establish a precise relationship between the regularized gap function, which is a natural error measure in this context, and our new merit function. Some error bounds are derived using both merit functions for the corresponding formulations of the proximal subproblem. We further use the regularized gap function to devise a new inexact proximal point algorithm for solving monotone variational inequalities. This inexact proximal point method preserves all the desirable global and local convergence properties of the classical exact/inexact method, while providing a constructive error tolerance criterion, suitable for further practical applications. The use of other tolerance rules is also discussed. Received: April 28, 1999 / Accepted: March 24, 2000?Published online July 20, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号