首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
分别以4-乙烯基吡啶(4VP)、丙烯酸(AAc)和N-异丙基丙烯酰胺(NIPAM)为共聚单体,以金属凝胶纤维为模板,通过自由基共聚合得到了具有环境响应性的共聚物一维纳米结构.采用红外光谱(FTIR)、流变仪和透射电子显微镜(TEM)等表征了共聚物一维纳米结构的组成、强度及微观形貌.结果表明,共聚单体与模板的配位能力强弱对所得到的共聚物一维纳米结构的产率、强度和形貌有很重要的影响.3种共聚物都具有相应的p H响应性和温度响应性,并且共聚单体含量越高,响应性越明显.  相似文献   

2.
通过一步水热法合成了分散性良好、尺寸均一的桑葚状CaF2纳米材料.采用X射线粉末衍射(XRD)、场发射扫描电子显微镜(FESEM)和透射电子显微镜(TEM)对产物的结构、形貌及尺寸进行了表征,发现CaF2纳米材料是由尺寸约为50 nm的纳米粒子构成.通过对不同反应阶段产物的分析提出了其形成机理.研究了Yb3+掺杂CaF2纳米材料的近红外发光性质.  相似文献   

3.
One-dimensional (1D) ZnO nanostructures were grown in amorphous SiO2 matrix by a co-templating method under hydrothermal condition. Using ethylenediamine (EDA) groups grafted mesoporous silica MCM-41 as a co-template, the growth of 1D ZnO nanostructures was oriented by soft EDA groups and confined inside the hard mesochannels of MCM-41. The microstructure and morphology of the 1D-ZnO-nanostructures/SiO2 composite were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and X-ray energy dispersive spectroscopy (EDS). All these results indicate that the 1D ZnO nanostructures were synthesized and highly dispersed in the amorphous SiO2 matrix. Blue-shifted exciton absorption was observed from the co-templating synthesized sample.  相似文献   

4.
The objectives of the present research are synthesizing three-dimensional (3D) nickel nanostructures and investigating their magnetic properties. Thus a template-free method was used to prepare 3D dandelion-like nickel nanostructures via reducing of nickel chloride with hydrazine hydrate in ethylene glycol solution at 100 ℃. The resulting Ni nanostructures were characterized by means of powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected-area electron diffraction (SAED). And the magnetic properties of the 3D Ni nanostructures were measured as well. Results indicated that solvothermal process could be successfully used to prepare 3D dandelion-like nanostructures of Ni at a relatively mild temperature of 100℃. And the conclusions were made as follows: as-prepared Ni samples had obvious shape anisotropy and were composed of fine nanocrystallites, while they had significantly enhanced ferromagnetic properties than bulk Ni and Ni nanoparticles.  相似文献   

5.
A class of nanostructured surface phases on SrTiO3(001) is reported and characterized through atomic-resolution scanning tunneling microscopy and Auger electron spectroscopy. These surface phases are created via argon ion sputtering and UHV annealing and form close-packed domains of highly ordered nanostructures. Depending on the type of nanostructures present, the domain ordering exhibit either (6 x 2), (9 x 2), (12 x 2), (6 x 8), or (7 x 4) surface patterning. The nanostructures are composed of TiO2-derived complexes surrounded by a TiO2 surface termination. Such surface ordering phenomena introduce another level of complexity in the chemistry of perovskite oxide surfaces and provide a basis from which potential photocatalytic and molecular-ordering applications may be developed.  相似文献   

6.
贵金属纳米颗粒具有局域表面等离激元这一特性使其具有丰富的光学性质,而这一特性受制于纳米颗粒所形成的立体几何形状,而透射电镜和扫描电镜的二维图像不能真切地观测和确定纳米颗粒所形成的立体几何结构。透射电镜三维重构技术可作为一种确定纳米颗粒立体结构的直观有效的方法。本文利用透射电镜的三维重构技术,选择合适的参数进行二维图像的采集、图像匹配对中及重构、立体模型的构建,从而通过构建的模型对两种金纳米颗粒样品的不同几何形状所产生的边界形态进行了确认和分析。  相似文献   

7.
In this work, we show the effects of nanoconfinement on the crystallization of poly(ethylene oxide) (PEO) nanotubes embedded in anodized aluminum oxide (AAO) templates. The morphological characteristics of the hollow 1D PEO nanostructures were evaluated by scanning electron microscopy (SEM). The crystallization of the PEO nanostructures and bulk was studied with differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD). The crystallization of PEO nanotubes studied by DSC is strongly influenced by the confinement showing a strong reduction in the crystallization temperature of the polymer. X-ray diffraction (XRD) experiments confirmed the isothermal crystallization results obtained by DSC, and studies carried out at low temperatures showed the absence of crystallites oriented with the extended chains perpendicular to the pore wall within the PEO nanotubes, which has been shown to be the typical crystal orientation for one-dimensional polymer nanostructures. In contrast, only planes oriented 33, 45, and 90° with respect to the plane (120) are arranged parallel to the pore's main axis, indicating preferential crystal growth in the direction of the radial component. Calculations based on classical nucleation theory suggest that heterogeneous nucleation prevails in the bulk PEO whereas for the PEO nanotubes a surface nucleation mechanism is more consistent with the obtained results.  相似文献   

8.
Three-dimensional, dendritic micrometer-scale spheres of alkali metal hydrogen titanate 1D nanostructures (i.e., nanowires and nanotubes) have been generated using a modified hydrothermal technique in the presence of hydrogen peroxide and an alkali metal hydroxide solution. Sea-urchin-like assemblies of these 1D nanostructures have been transformed into their hydrogen titanate analogues (lepidocrocite HxTi2-x/4squarex/4O4 (x approximately 0.7, square: vacancy)) by neutralization as well as into their corresponding anatase TiO2 nanostructured counterparts through a moderate high-temperature annealing dehydration process without destroying the 3D hierarchical structural motif. The as-prepared hollow spheres of titanate and titania 1D nanostructures have overall diameters, ranging from 0.8 to 1.2 microm, while the interior of these aggregates are vacuous with a diameter range of 100 to 200 nm. The constituent, component titanate and TiO2 1D nanostructures have a diameter range of 7+/-2 nm and lengths of up to several hundred nanometers. A proposed two-stage growth mechanism of these hollow micrometer-scale spheres was supported by time-dependent scanning electron microscopy, atomic force microscopy, and inductively coupled plasma atomic emission spectrometry data. We have also demonstrated that these assemblies are active photocatalysts for the degradation of synthetic Procion Red dye under UV light illumination.  相似文献   

9.
Intermolecular interactions involving pi-pi interaction and hydrogen bonding are used to create one-dimensional molecular nanostructures of hexasubstituted aromatics. Site-selective steady state fluorescence, time-resolved fluorescence, scanning electron microscopy, and atomic force microscopy measurements detail the intermolecular interactions that drive the aromatic molecules to self-assemble in solution to form well-ordered columnar stacks. These nanostructures, formed in solution, vary in their number, size, and structure depending on the solvent used. In addition, our results indicate that the substituents/ side groups and the proper choice of the solvent can be used to tune the intermolecular interactions. The 1D stacks and their aggregates can be easily transferred by solution casting, thus allowing a simple preparation of molecular nanostructures on different surfaces.  相似文献   

10.
通过一步水热法合成了分散性良好、尺寸均一的桑葚状CaF2纳米材料,采用X射线粉末衍射(XRD)、场发射扫描电子显微镜(FESEM)和透射电子显微镜(TEM)对产物的结构、形貌及尺寸进行了表征,发现CaF2纳米材料是由尺寸约为50 nm的纳米粒子构成.通过对不同反应阶段产物的分析提出了其形成机理,研究了yb3+掺杂CaF...  相似文献   

11.
通过无模板的水热方法合成了AgLa(WO4)2树枝状纳米晶,没有表面活性剂等模板的介入,使反应变得简捷、绿色和经济. 综合利用多种测试手段对所得材料进行了表征,如X-射线粉末衍射,扫描电子显微镜,透射电子显微镜等,并根据实验结果的分析提出了扩散限制生长(DLA,diffusion-limited aggregation)模型. AgLa(WO4)2树枝状纳米晶可以作为稀土离子掺杂的主体材料,这种掺杂稀土离子(Yb3+, Er3+, Tm3+)的纳米晶在980 nm激光激发下展示丰富的上转换发光颜色. 根据上转换光谱详细研究了AgLa(WO4)2:RE3+树枝状纳米晶在980 nm激光激发下的上转换发光性质和发光机理.  相似文献   

12.
We report the first observation of the formation of novel Co-based three-dimensional (3D) self-assembly hollow nanostructures, i.e., nest-shaped nanospheres composed of sheet-like particles, via reduction of cobalt salt with sodium tetrahydroboride in cetyltrimethylammonium bromide (CTAB)-cyclohexane-NH4F aqueous solutions. It was found that the cyclohexane has a significant influence on the formation of the nest-shaped Co-based nanospheres, because when the experiments are carried out in the absence of cyclohexane, only sheet-like particles are formed. NH4F plays also an important role in the formation of the hollow nanostructures because without this salt mainly solid spherical structures, composed of sheet-like particles, instead of nest-shaped structures are obtained. The nanostructures are mainly formed by Co, but also a minor amount (17%) of Co2B is present in the final compounds. The structures are characterized by X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), and field-emission scanning electron microscopy (FESEM). A possible mechanism for the formation of the novel Co-based nanostructures is proposed.  相似文献   

13.
The synthesis of Mg(OH)2 one-dimensional (1D) nanostructures was systematically investigated in different solvents at various temperatures with Mg10OH18Cl2·5H2O nanowires as source materials. The results showed that the characters of the products, such as crystal size, shape, and structure, were strongly influenced by the solvent and temperature during the solvothermal process. 1D nanotubes of Mg(OH)2, with 80-300 nm outer diameter, 30-80 nm wall thickness, and several tens of micrometers in length were obtained by choosing bidentate ligand solvents such as ethylenediamine and 1,6-diaminohexane as the reaction solvent. But when using monodentate ligand pyridine as the reaction solvent, the obtained samples showed nanorods morphology. The Mg(OH)2 thus produced was analyzed by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), high-resolution electron microscopy (HRTEM), and selected-area electron diffraction (SAED). The possible growth mechanism of the 1D nanostructure Mg(OH)2 was discussed.  相似文献   

14.
new material of Cu(OH)2 nanostructures was prepared using cupric nitrate and sodium hydroxide as raw materials by the chemical precipitation method. The Cu(OH)2 nanostructures were characterized by scanning electron microscope, transmission electron microscopy, infrared spectrometer, and X-ray diffractometer. The results showed that the Cu(OH)2 nanostructures exhibited excellent uniform and dispersion at 40°C. A series of factors was investigated to effect the photocatalytic efficiency of methyl orange (MO), such as the concentration of Cu(OH)2 nanostructures, the reaction time of the Cu(OH)2 nanostructures, the initial concentration of MO, and so on. As a result, the Cu(OH)2 nanostructures exhibited excellent photocatalytic efficiency with the concentration of 20 mg L–1 Cu(OH)2 nanostructures, the initial concentration of MO was 15 mg L–1 and the stirring time was 70 min.  相似文献   

15.
In this work, a facile route using simple hydrothermal reaction and sequential calcinations to synthesize 3-dimensional flower-like Y(2)O(3):Eu(3+) nanoarchitectures without employing templates or matrix for self-assembly is presented. The flower-like nanostructures are composed of nanosheets with thickness of about 30 nm, which is verified by the field-emission electron microscopy (FESEM). Influencing factors such as the dosage of reactants, the solvent, and pH are systematically investigated. The time-dependent experiments indicate a self-assembly mechanism. This method is also applicable in the preparation of other lanthanide oxides. The PL spectra of the as-synthesized Y(2)O(3):Eu(3+) are systematically studied. Both the Eu(3+) concentration and the calcinations temperature have great effect on the luminescence intensity of (5)D(0)-(7)F(2) transition. The decay curve of the (5)D(0) transition shows that the lifetime of the as-obtained Y(2)O(3):Eu(3+) is about 2.4 ms.  相似文献   

16.
We have prepared ultrathin, nanostructured melanin films on Au(111) by means of electrochemical self-assembly. These films were characterized by using Auger electron spectroscopy, X-ray absorption near-edge structure spectroscopy, scanning tunneling microscopy, magnetic force microscopy, and electrochemical techniques. Two types of nanostructures are present in the film: melanin nanoparticles and Fe(3)O(4) nanoparticles. The melanin nanoparticles contain Fe bonded to oxygen-containing phenolic groups in an octahedral configuration similar to that found in Fe(2)O(3). The inorganic-organic composite exhibits magnetic properties and catalyzes the electroreduction of hydrogen peroxide in alkaline and neutral electrolyte solutions. The electrocatalytic activity depends on the Fe-bound melanin and appears to be similar to that found for Fe-porphyrins.  相似文献   

17.
A facile L-cysteine-assisted route was designed for the selectively controlled synthesis of 1D and novel, interesting 3D CdS spherical nanostructures constructed from CdS nanorods (or nanopolypods) in a binary solution. By controlling reaction conditions such as the molar ratio between Cd(OAc)2 and L-cysteine and the volume ratio of the mixed solvents, the synthesis of various 3D architectural structures and 1D wirelike structures in large quantities can be controlled. This is the first reported case of the direct growth of novel 3D self-assemblies of CdS nanorods (or nanopolypods). The morphology, structure, and phase composition of the as-prepared CdS products were examined by using various techniques (X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), selected-area electron diffraction (SAED), high-resolution TEM, and Raman spectroscopy). On the basis of the results from TEM studies and our analysis, we speculate that in the present synthesis the L-cysteine dominates nucleation growth and the ethylenediamine (en)-dominated, oriented-assembly process. Interestingly, the products obtained show a gradient evolution in color from light-yellow to dark-yellow, which implies that their intrinsic optical properties change, possibly due to variations in their special morphologies and structures. This facile solution-phase L-cysteine-assisted method could be extended for the controlled preparation of other metal chalcogenides nanostructures with complex morphologies.  相似文献   

18.
Nanostructures of Cd(OH)2 were prepared using a simple template-free method in water by 4?h refluxing at about 95?°C without using any organic compound. Powder X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform-infrared and UV?Cvis diffuse reflectance spectroscopy techniques were applied for characterization of the nanostructures. The XRD pattern demonstrates that the nanostructures are crystallized in hexagonal phase. The SEM image shows that the nanostructures are nearly in plate form. The DRS of the nanostructures shows absorption maxima at about 315?nm. Photocatalytic activity of the nanostructures was investigated by degradation of methylene blue (MB) under UV irradiation. Moreover, the effects of refluxing time and calcination temperature on photocatalytic activity were studied.  相似文献   

19.
DNA nanotechnology utilizes DNA double strands as building units for self-assembly of DNA nanostructures.The specific base-pairing interaction between DNA molecules is the basis of these assemblies.After decades of development,this technology has been able to construct complex and programmable structures.With the increase in delicate nature and complexity of the synthesized nanostructures,a characterization technology that can observe these structures in three dimensions has become necessary,and developing such a technology is considerably challenging.DNA assemblies have been studied using different characterization methods including atomic force microscopy(AFM),scanning electron microscopy(SEM),and transmission electron microscopy(TEM).However,the three-dimensional(3D)DNA assemblies always collapse locally due to the dehydration during the drying process.Cryogenic electron microscopy(cryo-EM)can overcome the challenge by maintaining three-dimensional morphologies of the cryogenic samples and reconstruct the 3D models from cryogenic samples accordingly by collecting thousands of two-dimensional(2D)projection images,which can restore their original morphologies in solution.Here,we have reviewed several typical cases of 3D DNA-assemblies and highlighted the applications of cryo-EM in characterization of these assemblies.By comparing with some other characterization methods,we have shown how cryo-EM promoted the development of structural characterization in the field of DNA nanotechnology.  相似文献   

20.
We show that seeded growth can be applied to creating two-dimensional (2D) dendritic Au nanostructures on sample grids, which can be directly characterized by transmission electron microscopy (TEM). The 2D synthesis of highly consistent structures offers a novel mechanistic perspective on the aggregation of colloidal Au nanocrystals on a surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号