首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Neuregulin-1 (NRG-1) is a vital factor involved in heart development. NRG-1 up-regulated connexin-40 (Cx40) in mice fetal cardiomyocytes has been reported, while the effect of NRG-1 on expression of connexins in embryonic stem cells-derived cardiomyocytes (ESCMs) is limited studied. The process of cardiomyocytes differentiated from embryonic stem cells with or without NRG-1 treatment was observed continuously. Exposure to NRG-1 increased the expression of Cx40 and connexin-45 (Cx45) in ESCMs, while the expression of connexin-43 was unchanged regardless of NRG-1 treatment Western blot analysis also confirmed that the expression of Cx40 and Cx45 in the beating foci was increased in the presence of NRG-1. These results indicate that connexins are differentially regulated by exogenous NRG-1 during cardiomyocytic differentiation of embryonic stem cells.  相似文献   

2.
Mitochondria are crucial for maintaining the properties of embryonic stem cells (ESCs) and for regulating their subsequent differentiation into diverse cell lineages, including cardiomyocytes. However, mitochondrial regulators that manage the rate of differentiation or cell fate have been rarely identified. This study aimed to determine the potential mitochondrial factor that controls the differentiation of ESCs into cardiac myocytes. We induced cardiomyocyte differentiation from mouse ESCs (mESCs) and performed microarray assays to assess messenger RNA (mRNA) expression changes at differentiation day 8 (D8) compared with undifferentiated mESCs (D0). Among the differentially expressed genes, Pdp1 expression was significantly decreased (27-fold) on D8 compared to D0, which was accompanied by suppressed mitochondrial indices, including ATP levels, membrane potential, ROS and mitochondrial Ca2+. Notably, Pdp1 overexpression significantly enhanced the mitochondrial indices and pyruvate dehydrogenase activity and reduced the expression of cardiac differentiation marker mRNA and the cardiac differentiation rate compared to a mock control. In confirmation of this, a knockdown of the Pdp1 gene promoted the expression of cardiac differentiation marker mRNA and the cardiac differentiation rate. In conclusion, our results suggest that mitochondrial PDP1 is a potential regulator that controls cardiac differentiation at an early differentiation stage in ESCs.  相似文献   

3.
A phenotypic cell-based screen of a large combinatorial chemical library led to the identification of a class of diaminopyrimidine compounds (cardiogenol A-D) which can selectively and efficiently induce mouse embryonic stem cells (ESCs) to differentiate into cardiomyocytes. ESC-derived cardiomyocytes were shown to express multiple cardiac muscle markers, including myosin heavy chain, GATA-4, MEF2, and Nkx2.5, and spontaneously form beating regions. Such small molecules will serve as useful chemical probes to study cardiac muscle differentiation and may ultimately facilitate the therapeutic application of ESCs for cardiac repair.  相似文献   

4.
The development of proper biomaterials is critical for the success of cell therapy and modern tissue engineering. Here, we extruded the yolk and remaining inner mass from fertilized zebrafish eggs and used the resulting chorions as a biomaterial for the differentiation and attachment of mouse P19 embryonic carcinoma (EC) cells. Cells inserted into the chorion showed the spontaneous formation of embryoid body due to the repulsive cell adhesion of the chorion and differentiated specifically into neural cells and cardiomyocytes. In contrast, dissolved chorion extracellular matrix (ECM) conferred enhanced cell attachment on it, suggesting that a unique property of the zebrafish chorion with nanoporous structure appears to be responsible for the simple and controllable embryoid formation for stem cell differentiation. These results indicate that chorions from fertilized zebrafish eggs may be used as an extracellular matrix alternative and applied for stem cell differentiation to specific cell lineages.  相似文献   

5.
The maintenance of self-renewal in stem cells appears to be distinct from the induction of proliferation of the terminally differentiated mammalian cardiomyocytes because it is believed that the latter are unable to divide. However, proliferation is a necessary step in both processes. Interestingly, the small molecule 6-bromoindirubin-3'-oxime (BIO) is the first pharmacological agent shown to maintain self-renewal in human and mouse embryonic stem cells. To determine whether a molecule that can maintain stem cell properties can also participate in controlling the proliferative capability of the highly differentiated cardiomyocytes, we examine the effect of BIO in postmitotic cardiac cells. Here, we show that BIO promotes proliferation in mammalian cardiomyocytes. Our demonstration of a second role for BIO suggests that the maintenance of stem cell self-renewal and the induction of proliferation in differentiated cardiomyocytes may share common molecular pathways.  相似文献   

6.
Since the adult mammalian heart has limited regenerative capacity, cardiac trauma, disease, and aging cause permanent loss of contractile tissue. This has fueled the development of stem cell-based strategies to provide the damaged heart with new cardiomyocytes. Bone marrow-derived mesenchymal stem cells (BM-MSCs) are capable of self-renewal and differentiation into cardiomyocytes, albeit inefficiently. MicroRNAs (miRNAs, miRs) are non-coding RNAs that have the potential to control stem cell fate decisions and are employed in cardiac regeneration and repair. In this study, we tested the hypothesis that overexpression of miR-499a induces cardiomyogenic differentiation in BM-MSCs. Human BM-MSCs (hBM-MSCs) were transduced with lentiviral vectors encoding miR-499a-3p or miR-499a-5p and analyzed by immunostaining and western blotting methods 14 days post-transduction. MiR-499a-5p-transduced cells adopted a polygonal/rod-shaped (myocyte-like) phenotype and showed an increase in the expression of the cardiomyocyte markers α-actinin and cTnI, as cardiogenic differentiation markers. These results indicate that miR-499a-5p overexpression promotes the cardiomyogenic differentiation of hBM-MSCs and may thereby increase their therapeutic efficiency in cardiac regeneration.  相似文献   

7.
Background: Doxorubicin (Dox) is one of the most frequently prescribed anti-cancer drugs. However, clinical application with Dox is limited due to its potentially fatal cumulative cardiotoxicity. N-p-coumaroyl-4-aminobutan-1-ol (alk-A), an organic amide alkaloid and hippophamide (alk-B), a rare pyridoindole alkaloid were successfully obtained by purification and separation of seabuckthorn seed residue in our previous research. This study was undertaken to investigate the protective effect of alk-A and alk-B against Dox-induced embryonic rat cardiac cells (H9c2 cells) apoptosis. Methods: H9c2 cells were treated with Dox (2.5 µM) in the presence of alk-A and alk-B (10, 20, and 40 µM) and incubated for 24 h. Results: It was shown that pretreatment of the H9c2 cells with alk-A and alk-B significantly reduced Dox-induced apoptosis. Alk-A and alk-B both inhibited reactive oxygen species (ROS) production and suppressed cleaved-caspase-3 protein expression and the activation of JNK (Jun N-terminal kinases), as well as increasing ATP levels, favoring mitochondrial mitofusin protein expression, and relieving damage to mitochondrial DNA. Conclusions: These results suggest that alk-A and alk-B can inhibit Dox-induced apoptosis in H9C2 cardiac muscle cells via inhibition of cell apoptosis and improvement of mitochondrial function, while alk-B showed more protection. Alk-B could be a potential candidate agent for protecting against cardiotoxicity in Dox-exposed patients.  相似文献   

8.
9.
Stem cells are used for the investigation of developmental processes at both cellular and organism levels and offer tremendous potentials for clinical applications as an unlimited source for transplantation. Gangliosides, sialic acid-conjugated glycosphingolipids, play important regulatory roles in cell proliferation and differentiation. However, their expression patterns in stem cells and during neuronal differentiation are not known. Here, we investigated expression of gangliosides during the growth of mouse embryonic stem cells (mESCs), mesenchymal stem cells (MSCs) and differentiated neuronal cells by using high-performance thin-layer chromatography (HPTLC). Monosialoganglioside 1 (GM1) was expressed in mESCs and MSCs, while GM3 and GD3 were expressed in embryonic bodies. In the 9-day old differentiated neuronal cells from mESCs cells and MSCs, GM1 and GT1b were expressed. Results from immunostaining were consistent with those observed by HPTLC assay. These suggest that gangliosides are specifically expressed according to differentiation of mESCs and MSCs into neuronal cells and expressional difference of gangliosides may be a useful marker to identify differentiation of mESCs and MSCs into neuronal cells.  相似文献   

10.
Over the last few years, there has been an increased interest in the study of stem cells in biomedicine for therapeutic use and as a source for healing diseased or injured organs/tissues. More recently, vibrational spectroscopy has been applied to study stem cell differentiation. In this study, we have used both synchrotron based FTIR and Raman microspectroscopies to assess possible differences between human pluripotent (embryonic) and multipotent (adult mesenchymal) stem cells, and how O(2) concentration in cell culture could affect the spectral signatures of these cells. Our work shows that infrared spectroscopy of embryonic (pluripotent) and adult mesenchymal (multipotent) stem cells have different spectral signatures based on the amount of lipids in their cytoplasm (confirmed with cytological staining). Furthermore, O(2) concentration in cell culture causes changes in both the FTIR and Raman spectra of embryonic stem cells. These results show that embryonic stem cells might be more sensitive to O(2) concentration when compared to mesenchymal stem cells. While vibrational spectroscopy could therefore be of potential use in identifying different populations of stem cells further work is required to better understand these differences.  相似文献   

11.
Cardiotoxicity is one of the main side effects of doxorubicin (Dox) treatment. Dox could induce oxidative stress, leading to an opening of the mitochondrial permeability transition pore (mPTP) and apoptosis in cardiomyocytes. Previous studies have shown that Cryptotanshinone (Cts) has potential cardioprotective effects, but its role in Dox-induced cardiotoxicity (DIC) remains unknown. A Dox-stimulated H9C2 cell model was established. The effects of Cts on cell viability, reactive oxygen species (ROS), superoxide ion accumulation, apoptosis and mitochondrial membrane potential (MMP) were evaluated. Expressions of proteins in Akt-GSK-3β pathway were detected by Western blot. An Akt inhibitor was applied to investigate the effects of Cts on the Akt-GSK-3β pathway. The effects of Cts on the binding of p-GSK-3β to ANT and the formation of the ANT-CypD complex were explored by immunoprecipitation assay. The results showed that Cts could increase cell viability, reduce ROS levels, inhibit apoptosis and protect mitochondrial membrane integrity. Cts increased phosphorylated levels of Akt and GSK-3β. After cells were co-treated with an Akt inhibitor, the effects of Cts were abolished. An immunoprecipitation assay showed that Cts significantly increased GSK-3β-ANT interaction and attenuated Dox-induced formation of the ANT-CypD complex, thereby inhibiting opening of the mPTP. In conclusion, Cts could ameliorate oxidative stress and apoptosis via the Akt-GSK-3β-mPTP pathway.  相似文献   

12.
Engineering human cardiac tissue is a promising solution for myocardial repair of injured hearts and for drug screening. Herein, we examined the capability of chemically defined alginate scaffolds to promote cardiac tissue regeneration from human embryonic stem cell‐derived cardiomyocytes (hESC‐CMs) in serum‐free, chemically defined medium. The cells were single seeded or coseeded with human dermal fibroblasts (HFs) in macroporous scaffolds made from pristine alginate or alginate modified with arginine‐glycine‐aspartate (RGD) peptide and heparin‐binding peptide (HBP). Our results show that the addition of fibroblasts to the 3‐D culture is indispensable for the formation of functional cardiac tissues and that the presence of RGD/HBP attached to the alginate matrix further improves its functionality. The engineered tissue displayed the typical fiber morphology with massive striation. An increase in contraction amplitude and calcium transients with time, together with a decrease in excitation threshold, indicated advancement toward tissue maturation. Our results thus point to the importance of co‐cultivating fibroblasts with hESCs‐CMs in chemically defined peptide‐functionalized alginate scaffolds and culture medium for regenerating functional cardiac tissue in vitro.  相似文献   

13.
Single cell epitaxy by acoustic picolitre droplets   总被引:2,自引:0,他引:2  
Demirci U  Montesano G 《Lab on a chip》2007,7(9):1139-1145
The capability to encapsulate single to few cells with micrometre precision, high viability, and controlled directionality via a nozzleless ejection technology using a gentle acoustic field would have great impact on tissue engineering, high throughput screening, and clinical diagnostics. We demonstrate encapsulation of single cells (or a few cells) ejected from an open pool in acoustic picolitre droplets. We have developed this technology for the specific purpose of printing cells in various biological fluids, including PBS and agarose hydrogels used in tissue engineering. We ejected various cell types, including mouse embryonic stem cells, fibroblasts, AML-12 hepatocytes, human Raji cells, and HL-1 cardiomyocytes encapsulated in acoustic picolitre droplets of around 37 microm in diameter at rates varying from 1 to 10,000 droplets per second. At such high throughput levels, we demonstrated cell viabilities of over 89.8% across various cell types. Moreover, this ejection method is readily adaptable to other biological applications, such as extracting data from single cells and generating large cell populations from single cells. The technique described in the current study may also be applied to investigate stem cell differentiation at the single cell level, to direct tissue printing, and to isolating pure RNA or DNA from a single cell at the picolitre level. Overall, the techniques described have the potential for widespread impact on many high-throughput testing applications in the biological and health sciences.  相似文献   

14.
In developed countries, in which people have nutrient-rich diets, convenient environments, and access to numerous medications, the disease paradigm has changed. Nowadays, heart failure is one of the major causes of death. In spite of this, the therapeutic efficacies of medications are generally unsatisfactory. Although whole heart transplantation is ideal for younger patients with heart failure, many patients are deemed to be unsuitable for this type of surgery due to complications and/or age. The need for therapeutic alternatives to heart transplantation is great. Regenerative therapy is a strong option. For this purpose, several cell sources have been investigated, including intrinsic adult stem or progenitor cells and extrinsic pluripotent stem cells. Most intrinsic stem cells seem to contribute to a regenerative environment via paracrine factors and/or angiogenesis, whereas extrinsic pluripotent stem cells are unlimited sources of cardiomyocytes. In this review, we summarize the various strategies for using regenerative cardiomyocytes including our recent progressions: non-genetic approaches for the purification of cardiomyocytes and efficient transplantation. We expect that use of intrinsic and extrinsic stem cells in combination will enhance therapeutic effectiveness.  相似文献   

15.
Following a heart attack, more than a billion cardiac muscle cells (cardiomyocytes) can be killed, leading to heart failure and sudden death. Much research in this area is now focused on the regeneration of heart tissue through differentiation of stem cells, proliferation of existing cardiomyocytes and cardiac progenitor cells, and reprogramming of fibroblasts into cardiomyocytes. Different chemical modalities (i.e. methods or agents), ranging from small molecules and RNA approaches (including both microRNA and anti‐microRNA) to modified peptides and proteins, are showing potential to meet this medical need. In this Review, we outline the recent advances in these areas and describe both the modality and progress, including novel screening strategies to identify hits, and the upcoming challenges and opportunities to develop these hits into pharmaceuticals, at which chemistry plays a key role.  相似文献   

16.
Ma Z  Liu Q  Liu H  Yang H  Yun JX  Eisenberg C  Borg TK  Xu M  Gao BZ 《Lab on a chip》2012,12(3):566-573
Following myocardial infarction there is an irreversible loss of cardiomyocytes that results in the alteration of electrical propagation in the heart. Restoration of functional electrical properties of the damaged heart muscle is essential to recover from the infarction. While there are a few reports that demonstrate that fibroblasts can form junctions that transmit electrical signals, a potential alternative using the injection of stem cells has emerged as a promising cellular therapy; however, stem-cell electrical conductivity within the cardiac muscle fiber is unknown. In this study, an in vitro cardiac muscle model was established on an MEA-based biochip with multiple cardiomyocytes that mimic cardiac tissue structure. Using a laser beam, stem cells were inserted adjacent to each muscle fiber (cell bridge model) and allowed to form cell-cell contact as determined by the formation of gap junctions. The electrical conductivity of stem cells was assessed and compared with the electrical conductivities of cardiomyocytes and fibroblasts. Results showed that stem cell-myocyte contacts exhibited higher and more stable conduction velocities than myocyte-fibroblast contacts, which indicated that stem cells have higher electrical compatibility with native cardiac muscle fibers than cardiac fibroblasts.  相似文献   

17.
The in vitro basic biological characteristics and directed differentiation potential towards cardiomyocytes of adult adipose-derived stem cells (ADSCs) induced by angiotensin II were both investigated. ADSCs were isolated from adult adipose tissue and cultured in vitro, and were subsequently induced into adipocytes, chondrocytes, and osteoblasts for assays of multipotential differentiation. The morphological characteristics of ADSCs were observed under an inverted microscope in bright field and phase-contrast ways and a confocal laser scanning microscopy. Moreover, the directional differentiation potential was observed by Oil Red, alkaline phosphatase, von Kossa, and toluidine blue stainings, respectively. The expressions of CD34, CD44, CD45, CD105, and HLA-DR were also detected via flow cytometry. Following to this, ADSCs were induced by angiotensin II and basic fibroblast growth factor for the purpose of directional differentiation towards cardiomyocyte-like cells, and the cells treated with 5-azacytidine were regarded as the control. The results showed that the isolated and cultured ADSCs presented a typical morphology of fusiform shape and also expressed CD44, CD105, but not CD34, CD45, and HLA-DR with assays of flow cytometry. The multi-differentiations to adipocytes, chondrocytes, and osteoblasts confirmed that the isolated cells maintained the stem characteristics generating from adipose tissues. After 4 weeks of induction by angiotensin II, the cells expressed myosin heavy chain, troponin I, and connexin43 by immunocytochemistry staining, but without beating of the cells. This current study indicated that ADSCs possessed the characteristics of mesenchymal stem cells and angiotensin II could induce ADSCs into cardiomyocyte-like cells.  相似文献   

18.
Embryonic stem cells, due to their self-renewal and pluripotency properties, can be used to repair damaged tissues and as an unlimited source of differentiated cells. Although stem cells represent an important opportunity for cell based therapy and small molecules screening (in the context of drug or target discovery) many drawbacks are still preventing their widespread use. One of the most significant limitations is related to the complexity, as well as the reliability, of current protocols driving stem cells into any homogeneously differentiated cellular population. In this respect there is a strong demand for molecular agents promoting differentiation and thereby enabling robust, efficient and safe production of differentiated cells. In order to identify novel molecules that enhance early stages of differentiation, we developed an image based high content screening (HCS) approach using human embryonic stem cells (hESC). In our approach, we took advantage of custom image mining software specifically adapted for the selection of stem cell differentiation agents and the rejection of false positive hits. As a proof of concept ~3500 small molecules originating from commercial libraries were screened and a number of molecules of interests were identified. These molecules show stem cell differentiation properties comparable to the phenotypic signature obtained with the reference compound retinoic acid.  相似文献   

19.
从蛋白质组学角度分析大鼠骨髓间充质干细胞(MSCs)体外定向分化为心肌细胞过程中蛋白表达情况, 采用二维电泳分离蛋白, 用PDQuest软件分析蛋白表达差异, 并采用质谱(MALDI-TOF-MS)进行鉴定, 得到了54个蛋白点, 对蛋白的生物功能分析表明, 部分蛋白通过不同的信号途径参与了MSCs的分化过程.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号