首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
For the first time we report on the production of oligonucleotide microarrays using a highly parallel and highly integrated, pressure driven TopSpot nanoliter dispenser. The system enables non-contact printing of different media like oligonucleotides, DNA or protein solutions. We optimized the printing buffer needed for oligonucleotides microarrays production with respect to two major aspects: microfluidical optimum for droplet dispensing and biochemical coupling efficiency on different commercially available microarray slides. Coefficient of variations (CVs) of generated spot diameters were measured to be smaller than 1% within one single dispensing nozzle and smaller than 1.5% within all 24 parallel nozzles of the printhead for all printing buffers used. No carry-over and no cross-talk was found, in extensive experiments with oligonucleotides. Optimized printing buffer compositions and concentrations for oligonucleotide microarrays were found, as well as optimized coupling protocols. Furthermore, buffers and protocols were adapted to a host of different microarray slides used. With this system, prime critical points of microarray production are solved, leading to high quality high throughput microarray fabrication.  相似文献   

2.
A number of linkers for microchip-based (microarray) synthesis of oligonucleotides were synthesized here using photolabile intermediates. The resulting linkers are designed for covalent immobilization on slides containing both hydroxyl and amino groups.The first series of linkers was intended for the synthesis of oligonucleotide arrays for hybridization analysis. These linkers provide a strong covalent bond with the slide surface when amino groups in oligonucleotide heterocyclic bases are deprotected.The second series of linkers allows to cleave the synthesized oligonucleotides from the support on which they were synthesized. Furthermore, the use of such linkers yields oligonucleotides devoid of the phosphate group at their 3′ end.The obtained linkers were successfully tested in the synthesis of oligonucleotides on a microchip for subsequent hybridization analysis and assembly of a DNA fragment.  相似文献   

3.
Commercially available polystyrene (PS) slides were plasma nanotextured (nano-roughened) through treatment in oxygen plasma discharges to create substrates with increased surface area for microarray applications. Conditions of plasma treatment were determined for maximum and uniform oligonucleotide immobilization on these nanotextured PS slides. Oligonucleotides were immobilized onto the surface in the form of biotinylated oligonucleotide/streptavidin conjugates to take advantage of increased protein binding capacity of the substrate. It was found that the amount of oligonucleotides that could be immobilized was increased up to ten times on plasma treated as compared with untreated slides. The sensitivity of detection of labelled hybridized probes was improved by a factor of 20. Optimized nanotextured PS slides were subsequently used to develop a microarray for the detection of three deleterious BRCA1 gene mutations by immobilizing oligonucleotides corresponding to wild and mutant-type sequences. The microarray developed on the nanotextured PS slides provided higher specific hybridization signal and discrimination ratios as compared with flat untreated PS slides.  相似文献   

4.
A capillary zone electrophoresis-negative electrospray ionization-quadrupole time of flight-mass spectrometric method was developed for the characterization of oligonucleotides after synthesis, using model compounds. The major difficulty is the adduction of metal cations to the polyanionic backbone of the oligonucleotide sample, resulting in complex spectra and decreased sensitivity. Several approaches were investigated to circumvent this problem. Separation was performed in an ammonium carbonate buffer. During separation, the interfering metal ions were exchanged for ammonium ions, which are less tightly bound to the oligonucleotide when ionized. The influence of the addition of piperidine and imidazole or trans-1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid (CDTA) to the running buffer for further reduction of cation adduction was investigated. Addition of CDTA to the buffer system resulted in a deconvoluted spectrum with very little adducts. On-line sample stacking proved vital to preconcentrate the samples. The pH and the concentration of the ammonium carbonate buffer as well as the electrophoresis voltage were optimized to achieve the best signal response for the oligonucleotides and a maximum reduction of the cation adducts as well as a short analysis time. Finally, the sheath liquid composition was examined for further improvement of the signal. The developed method was used to analyze different oligonucleotides (5000-9200 Da) in light of its use as a final quality control method for oligonucleotides in terms of purity and sequence homogeneity of the synthesized products. In all cases, very little adducts were observed in the deconvoluted spectra, and the relative errors of the measured molecular masses ranged from 3 to 35 ppm.  相似文献   

5.
A new approach to oligonucleotide arrays is demonstrated that utilizes zirconium phosphonate-derivatized glass slides. The active slides are prepared by binding Zr(4+) to surfaces terminated with organophosphonate groups previously deposited using either Langmuir-Blodgett or self-assembled monolayer methods. Oligonucleotide probes modified with a terminal phosphate bind strongly to the active zirconium phosphonate monolayer, and arrays for detecting fluorescent targets have been prepared using commercial spotting and scanning instruments. Preferred binding to the surface of the terminal phosphate of the modified probes instead of the internal phosphate diester groups is demonstrated and shown to yield increased fluorescence intensity after hybridization with labeled targets. A significant decrease in background signal is achieved by treating the slides with bovine serum albumin after spotting and before hybridization. A further increase in fluorescence after hybridization is observed when using a poly-guanine spacer between the probe oligomer and the terminal phosphate. Combining these modifications, an intensity ratio of nearly 1000 is achieved when comparing 5'-phosphate-modified 33-mer probes with unmodified probes upon hybridization with fluorescent targets.  相似文献   

6.
Summary: A novel method for the study of the interaction of the platinum drug cis-diamminedichloroplatinum(II) (cis-DDP or cisplatin) with 50-mer oligonucleotides that were printed in high throughput microarray format is introduced. Our aim has been to identify sequence level differences in the interaction of various drug candidates that may serve to enable rational targeting of drugs to specific genes. A microarray of 26 control genes commonly used in oligonucleotide, Affymetrix and c-DNA microarray platforms were microcontact spotted as amine-terminated 50-mer oligonucleotides onto glycidoxypropyltimethoxy silane (GPMS)-modified glass slides. The generalized study format involved hybridization of probes with 10 fluorescently labeled complements as target followed by confocal imaging to reveal original spot intensities. Microarrays were then incubated at 37 °C with hydrolysed cisplatin while in hybridization cassettes, washed in buffer and then scanned again to reveal secondary intensities. We have investigated the influence of cisplatin to stabilize the relative fluorescence intensity via intrastrand crosslinking by studying the impact of varying drug:probe-DNA mole ratio (0:1 (blank), 1:1, 25:1 and 50:1) and annealing temperatures (36, 46, or 56 °C) on retained intensity. ANOVA revealed that 4 of the 10 genes demonstrated (p < 0.0001) the expected result of increased signal retention with decreased temperature and increased drug concentration.  相似文献   

7.
The synthesis and determination of the structure of a Förster resonance energy transfer probe intended for the detection of specific nucleic acid sequences are described here. The probe is based on the hybridization of oligonucleotide modified quantum dots with a fluorescently labeled nucleic acid sample resulting in changes of the fluorescence emission due to the energy transfer effect. The stoichiometry distribution of oligonucleotides conjugated to quantum dots was determined by capillary electrophoresis separation. The results indicate that one to four molecules of oligonucleotide are conjugated to the surface of a single nanoparticle. This conclusion is confirmed by the course of the dependence of Förster resonance energy transfer efficiency on the concentration of fluorescently labeled complementary single‐stranded nucleic acid, showing saturation. While the energy transfer efficiency of the probe hybridized with complementary nucleic acid strands was 30%, negligible efficiency was observed with a noncomplementary strand.  相似文献   

8.
Interest in the unique optical properties of quantum dots (QDs) has resulted in the development QD-bioconjugates for imaging and diagnostics. Although these applications are numerous, considerably less is known about the interactions between QDs and biomolecules. In this work, we describe hydrogen-bonding interactions between oligonucleotides and CdSe/ZnS quantum dots capped with mercaptoacetic acid ligands. The strength of the interactions can be modulated by changes in the pH and ionic strength, the addition of formamide, and differences between ssDNA and dsDNA. Fluorescence resonance energy transfer experiments have shown that conjugated oligonucleotides adopt a conformation that lies across the surface of the QD. The hydrogen-bonding interactions also affect the kinetics of hybridization with QD-DNA conjugates and the thermal stability of QD-conjugated dsDNA. The former is analogous to conventional solid-phase hybridization, where stronger oligonucleotide adsorption leads to faster kinetics. With respect to the latter, interactions with the QD surface can sharpen the melt transition and alter the melt temperature of dsDNA. These effects are largely absent when adsorptive interactions are minimized.  相似文献   

9.
Guven B  Boyacı İH  Tamer U  Çalık P 《The Analyst》2012,137(1):202-208
In this study, a new method combining magnetic separation (MS) and surface-enhanced Raman scattering (SERS) was developed to detect genetically modified organisms (GMOs). An oligonucleotide probe which is specific for 35 S DNA target was immobilized onto gold coated magnetic nanospheres to form oligonucleotide-coated nanoparticles. A self assembled monolayer was formed on gold nanorods using 5,5'-dithiobis (2-nitrobenzoic acid) (DTNB) and the second probe of the 35 S DNA target was immobilized on the activated nanorod surfaces. Probes on the nanoparticles were hybridized with the target oligonucleotide. Optimization parameters for hybridization were investigated by high performance liquid chromatography. Optimum hybridization parameters were determined as: 4 μM probe concentration, 20 min immobilization time, 30 min hybridization time, 55 °C hybridization temperature, 750 mM buffer salt concentration and pH: 7.4. Quantification of the target concentration was performed via SERS spectra of DTNB on the nanorods. The correlation between the target concentration and the SERS signal was found to be linear within the range of 25-100 nM. The analyses were performed with only one hybridization step in 40 min. Real sample analysis was conducted using Bt-176 maize sample. The results showed that the developed MS-SERS assay is capable of detecting GMOs in a rapid and selective manner.  相似文献   

10.
Microarray-based technology is in need of flexible and cost-effective chemistry for fabrication of oligonucleotide microarrays. We have developed a novel method for the fabrication of oligonucleotide microarrays with unmodified oligonucleotide probes on nanoengineered three-dimensional thin films that are deposited on glass slides by consecutive layer-to-layer adsorption of polyelectrolytes. Unmodified oligonucleotide probes were spotted and immobilized on these multilayered polyelectrolyte thin films (PET) by electrostatic adsorption and entrapment on the porous structure of the PET film. The PET provides higher probe binding capacity and thus higher hybridization signal than that of the traditional two-dimensional aminosilane and poly-L-lysine coated slides. Immobilized probe densities of 3.4 x 10(12)/cm2 were observed for microarray spots on PET with unmodified 50-mer oligonucleotide probes, which is comparable to the immobilized probe densities of alkyamine-modified 50-mer probes end-tethered on an aldehyde-functionalized slide. The study of hybridization efficiency showed that 90% of immobilized probes on PET film are accessible to target DNA to form duplex format in hybridization. The DNA microarray fabricated on PET film has wider dynamic range (about 3 orders of magnitude) and lower detection limit (0.5 nM) than the conventional amino- and aldehyde-functionalized slides. Oligonucleotide microarrays fabricated on these PET-coated slides also had consistent spot morphology. In addition, discrimination of single nucleotide polymorphism of 16S rRNA genes was achieved with the PET-based oligonucleotide microarrays. The PET microarrays constructed by our self-assembly process is cost-effective, versatile, and well suited for immobilizing many types of biological active molecules so that a wide variety of microarray formats can be developed.  相似文献   

11.
We report an approach to the in situ synthesis of oligonucleotide arrays on surfaces coated with crosslinked polymer multilayers. Our approach makes use of methods for the 'reactive' layer-by-layer assembly of thin, amine-reactive multilayers using branched polyethyleneimine (PEI) and the azlactone-functionalized polymer poly(2-vinyl-4,4'-dimethylazlactone) (PVDMA). Post-fabrication treatment of film-coated glass substrates with d-glucamine or 4-amino-1-butanol yielded hydroxyl-functionalized films suitable for the Maskless Array Synthesis (MAS) of oligonucleotide arrays. Glucamine-functionalized films yielded arrays of oligonucleotides with fluorescence intensities and signal-to-noise ratios (after hybridization with fluorescently labeled complementary strands) comparable to those of arrays fabricated on conventional silanized glass substrates. These arrays could be exposed to multiple hybridization-dehybridization cycles with only moderate loss of hybridization density. The versatility of the layer-by-layer approach also permitted synthesis directly on thin sheets of film-coated poly(ethylene terephthalate) (PET) to yield flexible oligonucleotide arrays that could be readily manipulated (e.g., bent) and cut into smaller arrays. To our knowledge, this work presents the first use of polymer multilayers as a substrate for the multi-step synthesis of complex molecules. Our results demonstrate that these films are robust and able to withstand the ~450 individual chemical processing steps associated with MAS (as well as manipulations required to hybridize, image, and dehybridize the arrays) without large-scale cracking, peeling, or delamination of the thin films. The combination of layer-by-layer assembly and MAS provides a means of fabricating functional oligonucleotide arrays on a range of different materials and substrates. This approach may also prove useful for the fabrication of supports for the solid-phase synthesis and screening of other macromolecular or small-molecule agents.  相似文献   

12.
The optical properties and surface area of quantum dots (QDs) have made them an attractive platform for the development of nucleic acid biosensors based on fluorescence resonance energy transfer (FRET). Solid-phase assays based on FRET using mixtures of immobilized QD–oligonucleotide conjugates (QD biosensors) have been developed. The typical challenges associated with solid-phase detection strategies include non-specific adsorption, slow kinetics of hybridization, and sample manipulation. The new work herein has considered the immobilization of QD biosensors onto the surfaces of microfluidic channels in order to address these challenges. Microfluidic flow can be used to dynamically control stringency by adjustment of the potential in an electrokinetic-based microfluidics environment. The shearing force, Joule heating, and the competition between electroosmotic and electrophoretic mobilities allow the optimization of hybridization conditions, convective delivery of target to the channel surface to speed hybridization, amelioration of adsorption, and regeneration of the sensing surface. Microfluidic flow can also be used to deliver (for immobilization) and remove QD biosensors. QDs that were conjugated with two different oligonucleotide sequences were used to demonstrate feasibility. One oligonucleotide sequence on the QD was available as a linker for immobilization via hybridization with complementary oligonucleotides located on a glass surface within a microfluidic channel. A second oligonucleotide sequence on the QD served as a probe to transduce hybridization with target nucleic acid in a sample solution. A Cy3 label on the target was excited by FRET using green-emitting CdSe/ZnS QD donors and provided an analytical signal to explore this detection strategy. The immobilized QDs could be removed under denaturing conditions by disrupting the duplex that was used as the surface linker and thus allowed a new layer of QD biosensors to be re-coated within the channel for re-use of the microfluidic chip.  相似文献   

13.
《Analytical letters》2012,45(3):467-482
Abstract

This paper describes a reagentless electrochemical DNA biosensor applied to the detection of human immunodeficiency virus (HIV) sequences based on electrochemical impedance spectroscopy (EIS). The novel DNA biosensor has been elaborated by means of an opposite‐charged adsorption Au‐Ag nanocomposite to a conductive polymer polypyrrole (PPy) modified platinum electrode (Pt) and self‐assembly the mercapto oligonucleotide probes onto the surface of modified electrode via the nanocomposite. The duplex formation was detected by measuring the electrochemical impedance signal of nucleic acids in phosphate buffer solution (PBS). Such response is based on the concomitant conductivity changes of the PPy film and nanocomposite. The reagentless scheme has been characterised using 21‐mer synthetic oligonucleotides as models: parameters affecting the hybridization assay were explored and optimized. The detection limit is 5.0×10?10 M of target oligonucleotides at 3σ. The potential for development of reagentless DNA hybridization analysis in the clinical diagnosis is being pursued.  相似文献   

14.
A novel base-mismatched oligonucleotide assay method based on label-free electrochemical biosensor was developed, in which the L-cysteine (Cys)-dihydroartemisinin (DHA) complex was used as a new electroactive indicator. In DNA sensor, Cys-DHA complex was initially formed on electrode surface by cathodic scanning, and target oligonucleotide was conjugated with Cys-terminated DHA indicator through electrostatic interaction under optimal pH. The subsequent sequence assay was responsive to hybridization recognition, which target oligonucleotide was captured by the surface-anchored DNA/Cys-DHA probe. The electrochemical signals of biosensor before and after hybridization were compared basing the measurements of semi-derivative linear scan voltammetry (SDLSV) and electrochemical impedance spectroscopy (EIS). On the basis of signal amplification of electroactive indicator and specific recognition of DNA probe, five target oligonucleotides with different mismatched bases were assayed, and a detection limit reached 0.3 nM. Furthermore, atomic force microscopy (AFM) was used to visually characterize specific recognition spots of biosensor at nanoscale. This study demonstrated a new electroactive molecule-based, biomolecule-involved electroactive indicator and its application in recognition and detection of complementary and base-mismatched oligonucleotide.  相似文献   

15.
The use of an amino-silica column in the chromatographic analysis of synthetic oligodeoxyribonucleotides and their derivatives from different stages of oligonucleotide synthesis has been investigated. By eluting with 0.10 M potassium phosphate solution of pH 3.30, the nucleotide composition of oligonucleotides can be established within 15 min. In a linear gradient of phosphate buffer (0.10-0.75 M) at neutral pH, the separation of oligonucleotides by length and in an acidic medium pH 3.30-4.30) by composition is possible; the oligonucleotides may be in the free form or modified by the various protecting groups used in synthetic oligonucleotide chemistry. The analysis of some reaction mixtures from different stages of oligonucleotide synthesis and of a number of synthetic oligodeoxyribonucleotides and their derivatives has been performed.  相似文献   

16.
Conjugation of molecules or proteins to oligonucleotides can improve their functional and therapeutic capacity. However, such modifications are often limited to the 5′ and 3′ end of oligonucleotides. Herein, we report the development of an inexpensive and simple method that allows for the insertion of chemical handles into the backbone of oligonucleotides. This method is compatible with standardized automated solid-phase oligonucleotide synthesis, and relies on formation of phosphoramidates. A unique phosphoramidite is incorporated into a growing oligonucleotide, and oxidized to the desired phosphoramidate using iodine and an amine of choice. Azides, alkynes, amines, and alkanes have been linked to oligonucleotides via internally positioned phosphoramidates with oxidative coupling yields above 80 %. We show the design of phosphoramidates from secondary amines that specifically hydrolyze to the phosphate only at decreased pH. Finally, we show the synthesis of an antibody-DNA conjugate, where the oligonucleotide can be selectively released in a pH 5.5 buffer.  相似文献   

17.
A novel approach to construct an electrochemical DNA sensor based on immobilization of a 25 base single-stranded probe, specific to E. coli lac Z gene, onto a gold disk electrode is described. The capture probe is covalently attached using a self-assembled monolayer of 3,3′-dithiodipropionic acid di(N-succinimidyl ester) (DTSP) and mercaptohexanol (MCH) as spacer. Hybridization of the immobilized probe with the target DNA at the electrode surface was monitored by square wave voltammetry (SWV), using methylene blue (MB) as electrochemical indicator. Variables involved in the sensor performance, such as the DTSP concentration in the modification solution, the self-assembled monolayers (SAM) formation time, the DNA probe drying time atop the electrode surface and the amount of probe immobilized, were optimized.

A good stability of the single- and double-stranded oligonucleotides immobilized on the DTSP-modified electrode was demonstrated, and a target DNA detection limit of 45 nM was achieved without signal amplification. Hybridization specificity was checked with non-complementary and mismatch oligonucleotides. A single-base mismatch oligonucleotide gave a hybridization response only 7 ± 3%, higher than the signal obtained for the capture probe before hybridization. The possibility of reusing the electrochemical genosensor was also tested.  相似文献   


18.
Surfaces carrying a dense layer of poly(ethylene glycol) (PEG) were prepared, characterized, and tested as substrates for DNA oligonucleotide microarrays. PEG bis(amine) with a molecular weight of 2000 was grafted onto silanized glass slides bearing aldehyde groups. After grafting, the terminal amino groups of the PEG layer were derivatized with the heterobifunctional cross-linker succinimidyl 4-[p-maleimidophenyl]butyrate to permit the immobilization of thiol-modified DNA oligonucleotides. The stepwise chemical modification was validated with X-ray photoelectron spectroscopy. Goniometry indicated that the PEG grafting procedure reduced surface inhomogeneities present after the silanization step, while atomic force microscopy and ellipsometry confirmed that the PEG layer was dense and monomolecular. Hybridization assays using DNA oligonucleotides and fluorescence imaging showed that PEG grafting improved the yield in hybridization 4-fold compared to non-PEGylated maleimide-derivatized surfaces. In addition, the PEG layer reduced the nonspecific adsorption of DNA by a factor of up to 13, demonstrating that surfaces with a dense PEG layer represent suitable substrates for DNA oligonucleotide microarrays.  相似文献   

19.
The human interleukine‐2 gene (hIL‐2) is detected with a label‐free DNA hybridization biosensor using a non‐inosine substituted probe. The sensor relies on the immobilization of a 20‐mer antisense single strand oligonucleotide (chIL‐2) related to the human interleukine‐2 gene on the pencil graphite electrode (PGE) as a probe. The guanine oxidation signal was monitored using anodic differential pulse voltammetry (ADPV). The electrochemical pretreatment of the polished PGE at 1.80 V for 5 min is suggested. Then, 5 min immobilization at 0.50 V was found as the optimum condition for immobilization of the probe. The electrochemical detection of hybridization between chIL‐2 and hIL‐2 as a target was accomplished. The selectivity of the biosensor was studied using noncomplementary oligonucleotides. Diagnostic performance of the biosensor is described and the detection limit is found 36 pg/μL.  相似文献   

20.
Ideal-filter CE (IFCE) is a method for the selection of affinity binders for protein targets from oligonucleotide libraries, for example, random-sequence oligonucleotide libraries and DNA-encoded libraries, in a single step of partitioning. In IFCE, protein–oligonucleotide complexes and unbound oligonucleotides move in the opposite directions, facilitating very high efficiency of their partitioning. For any given protein target and oligonucleotide library, protein–oligonucleotide complexes and unbound oligonucleotides move in the opposite directions only for a limited range of EOF mobilities, which, in turn, corresponds to a limited range of pH and ionic strength values of the running buffer. Rational design of IFCE-based partitioning requires a priori knowledge of this range of pH and ionic strength values, and here we introduce an approach to predict this range for a given type of the running buffer. The approach involves measuring EOF mobilities for a relatively wide range of pH and ionic strength (I) values and finding an empirical predictor function that related the EOF mobility with pH and ionic strength. In this work, we developed a predictor function for a running buffer (Tris-HCl) that is commonly used in CE-based partitioning of affinity binders for protein targets. This predictor function can be immediately used for the rational design of IFCE-based partitioning in this running buffer, while the described approach will be used to develop predictor functions for other types of running buffer if needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号