首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
采用层层自组装方法,制备了一种基于双抗体夹心层修饰金电极的信号增强电化学生物传感器,即先通过组装L-半胱氨酸、戊二醛,固定c—Myc(9E10)单克隆抗体(C.AbI),形成C.Ab1单抗修饰电极,可识别致癌基因c—myc蛋白;再结合上第二抗体羊抗鼠免疫球蛋白G抗体(c.Ab2),形成C.Ab1/c—myc/C—Ab2双抗夹心修饰电极,响应信号大幅度增强,传感性能优于C—A1单抗修饰电极.通过电化学阻抗和循环伏安行为探讨了双抗夹心法信号增强的机理,其阻抗值与c.myc浓度对数在0.043-430nM范围内成良好的线性关系,线性方程可拟合为Y=10046.10+863.33墨线性相关系数为0.9904,c—myc的最低检测限也降低至25.76pM.该传感器制备简单,选择性、重现性、稳定性和再生性好,在鼠血清样品中测得c—myc的回收率在97.4%-103.7%之间,表明该方法可用于实际肿瘤样品中c—myc的检测,在生物医学领域具有潜在的应用价值.  相似文献   

2.
将微印刷技术与银增强法相结合,建立了一种蛋白质阵列芯片制备与检测的新方法。通过定量分析证明了蛋白质可以被均匀地转印至固相载体表面,采用银增强法对蛋白质的直接法检测和夹心法检测的最低检测量分别可达0.33和0.13 fmol。此新方法应用于蛋白质阵列上具有灵活、灵敏及成本低廉等特点。  相似文献   

3.
Thompson M  Furtado LM 《The Analyst》1999,124(8):1133-1136
The acquisition of sequence, expression and other information concerning genetic material constitutes a crucial component of the modern revolution in molecular biology. One important advance in this area is the development of high density oligonucleotide/DNA microarrays which allows the rapid sequence analysis of genomic target samples in addition to diagnostic possibilities with respect to genetic and infectious disease. In the present article we review protocols for the design of such microarrays and their principles of operation. Together with a look at some recent applications we include brief remarks as to the possibilities for the future.  相似文献   

4.
High-transparency and high quality ZnO nanorod arrays were grown on the ITO substrates by a two-step chemical bath deposition (CBD) method. The effects of processing parameters including reaction temperature (25-95 °C) and solution concentration (0.01-0.1 M) on the crystal growth, alignment, optical and electrical properties were systematically investigated. It has been found that these process parameters are critical for the growth, orientation and aspect ratio of the nanorod arrays, showing different structural and optical properties. Experimental results reveal that the hexagonal ZnO nanorod arrays prepared under reaction temperature of 95 °C and solution concentration of 0.03 M possess highest aspect ratio of ∼21, and show the well-aligned orientation and optimum optical properties. Moreover the ZnO nanorod arrays based heterojunction electrodes and the solid-state dye-sensitized solar cells (SS-DSSCs) were fabricated with an improved optoelectrical performance.  相似文献   

5.
This work describes the in situ synthesis of oligonucleotide arrays on glass surfaces. These arrays are composed of features defined and separated by differential surface tension (surface tension arrays). Specifically, photolithographic methods were used to create a series of spatially addressable, circular features containing an amino-terminated organosilane coupled to the glass through a siloxane linkage. Each feature is bounded by a perfluorosilanated surface. The differences in surface energies between the features and surrounding zones allow for chemical reactions to be readily localized within a defined site. The aminosilanation process was analyzed using contact angle, X-ray photoelectron spectroscopy (XPS), and time-of-flight/secondary ion mass spectroscopy (TOF-SIMS). The efficiency of phosphoramidite-based oligonucleotide synthesis on these surface tension arrays was measured by two methods. One method, termed step-yields-by-hybridization, indicates an average synthesis efficiency for all four (A,G,C,T) bases of 99.9 +/- 1.1%. Step yields measured for the individual amidite bases showed efficiencies of 98.8% (dT), 98.0% (dA), 97.0% (dC), and 97.6% (dG). The second method for determining the amidite coupling efficiencies was by capillary electrophoresis (CE) analysis. Homopolymers of dT (40- and 60mer), dA (40mer), and dC (40mer) were synthesized on an NH(4)OH labile linkage. After cleavage, the products were analyzed by CE. Synthesis efficiencies were calculated by comparison of the full-length product peak with the failure peaks. The calculated coupling efficiencies were 98.8% (dT), 96.8% (dA), and 96.7% (dC).  相似文献   

6.
7.
Yuen PK  Li G  Bao Y  Muller UR 《Lab on a chip》2003,3(1):46-50
Reactions of biomolecules with surface mounted materials on microscope slides are often limited by slow diffusion kinetics, especially in low volumes where diffusion is the only means of mixing. This is a particular problem for reactions where only small amounts of analyte are available and the required reaction volume limits the analyte concentration. A low volume microfluidic device consisting of two interconnected 9 mm x 37.5 mm reaction chambers was developed to allow mixing and closed loop fluidic circulation over most of the surface of a microscope slide. Fluid samples are moved from one reaction chamber to the other by the rotation of a magnetic stirring bar that is driven by a standard magnetic stirrer. We demonstrate that circulation and mixing of different reagents can be efficiently accomplished by this closed loop device with solutions varying in viscosity from 1 to 16.2 centipoise. We also show by example of a microarray hybridization that the reaction efficiency can be enhanced 2-5 fold through fluid mixing under conditions where diffusion is rate limiting. For comparison, similar results were achieved with a disposable commercial device that covers only half of the reaction area of the closed loop device.  相似文献   

8.
Fluorescence intensity of various chemical species is enhanced in the microenvironment provided by micelles. Parameters which affect fluorescence intensities are examined by using dansyl (Dns) amino acids as the probe. The retention behavior of Dns-amino acids in micellar LC is examined by using ion-exchange-induced stationary phases. The type and concentration of micellar agent and modifier ion as well as concentration of acetonitrile in the mobile phase affect the retention and signal intensity of Dns-amino acids. The order of elution of Dns-amino acids obtained with the micellar mobile phase is very different from that observed in conventional reversed-phase LC. Fluorescence intensities of Dns-amino acids are enhanced by the micellar mobile phase.  相似文献   

9.
将微孔板生物芯片制备技术与银增强显色方法相结合,建立了一种高通量蛋白免疫分析新方法。研究采用夹心法反应原理,将人IgG捕获抗体以微阵列形式点样于96孔板底部制备成蛋白微阵列,并依次与人IgG、生物素标记二抗及链亲和素胶体金反应,最后用银增强法显色。采用平板式扫描仪对微孔板显色结果进行快速扫描成像,图像采用luxscan 3.0软件处理。结果表明:微孔板蛋白芯片的最低检测量可达0.6 ng/mL,线性范围10 ng/mL~100μg/mL,相关系数为0.98,重复性较好(CV10%)。  相似文献   

10.
11.
Structural and spatial organization are fundamental properties of biological systems that allow cells to regulate a wide range of biochemical processes. This organization is often transient and governed by external cues that initiate dynamic self-assembly processes. The construction of synthetic cell-like materials with similar properties requires the hierarchical and reversible organization of selected functional components on molecular scaffolds to dynamically regulate signaling pathways. The realization of such transient molecular programs in synthetic cells, however, remains underexplored due to the associated complexity of such hierarchical platforms. In this contribution, we effectuate dynamic spatial organization of effector protein subunits in a synthetic biomimetic compartment, a giant unilamellar vesicle (GUV), by associating in a reversible manner two fragments of a split luciferase to the membrane. This induces their structural dimerization, which consequently leads to the activation of enzymatic signaling. Importantly, such organization and activation are dynamic processes, and can be autonomously regulated – thus opening up avenues toward continuous spatiotemporal control over supramolecular organization and signaling in an artificial cell.

Engineered artificial cells respond to environmental cues through a pre-programmed enzymatic machinery that induces spatio-structural organization and activation of effector proteins at the lipid membrane.  相似文献   

12.
Nucleic acid nanostructures are useful as templates for bionanofabrication of composite molecular nanostructures in materials science, molecular electronics, and biosensing. Here, we demonstrate that terminal deoxynucleotidyl transferase, which repetitively adds mononucleotides to the 3' end of a short DNA initiator, can be used to rapidly fabricate DNA nanostructures up to 121 nm high with lateral dimensions from 0.1 to 4 mum in 2 h. These programmable scaffolds can potentially be employed to build more complex nanostructures consisting of natural or unnatural nucleotides with selective docking sites along the single-stranded DNA.  相似文献   

13.
This paper reports a chemical strategy for preparing carbohydrate arrays and utilizes these arrays for the characterization of carbohydrate-protein interactions. Carbohydrate chips were prepared by the Diels-Alder-mediated immobilization of carbohydrate-cyclopentadiene conjugates to self-assembled monolayers that present benzoquinone and penta(ethylene glycol) groups. Surface plasmon resonance spectroscopy showed that lectins bound specifically to immobilized carbohydrates and that the glycol groups prevented nonspecific protein adsorption. Carbohydrate arrays presenting ten monosaccharides were then evaluated by profiling the binding specificities of several lectins. These arrays were also used to determine the inhibitory concentrations of soluble carbohydrates for lectins and to characterize the substrate specificity of beta-1,4-galactosyltransferase. Finally, a strategy for preparing arrays with carbohydrates generated on solid phase is shown. This surface engineering strategy will permit the preparation and evaluation of carbohydrate arrays that present diverse and complex structures.  相似文献   

14.
15.
Photochromes are chromophores that are reversibly isomerized between two metastable forms using light, or light and heat. When photochromes are covalently linked to other chromophores, they can act as molecular photonic analogues of electronic transistors. As bistable switches, they can be incorporated into the design of molecules capable of binary arithmetic and both combinatorial and sequential digital logic operations. Small ensembles of such molecules can perform analogue signal modulation similar to that carried out by transistor amplifiers. Examples of molecules that perform multiple logic functions, act as control elements for fluorescent reporters, and mimic natural photoregulatory functions are presented.  相似文献   

16.
The effect of various acquisition and processing parameters on the sensitivity of HMBC spectra for typical organic molecules has been systematically investigated. For molecules in the 200–600 molecular weight range, an acquisition time of 0.2 to 0.4 s, a recycle time of no more than 1.0 s, optimization for nJCH = 8 Hz and 512 time increments (with two‐ to fourfold linear prediction) are recommended. Some form of sine bell weighting along f2 and either Gaussian or sine bell weighting along f1 is suggested. The use of a 0.1‐s acquisition time and/or Gaussian or exponential weighting along f2 can result in dramatic sensitivity loss, particularly for correlation peaks involving protons with complex splitting patterns, and should be avoided. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
The specificity of molecular recognition is reflected to a high degree by the selectivity of the respective biosensor response. Therefore, the application of highly specific enzymes offers advantages for analytical purposes. Using lactate monooxygenase in combination with lactate dehydrogenase and pyruvate kinase, sequentially acting enzyme electrodes for lactate, pyruvate, ADP and enzyme activities, e.g. lactate dehydrogenase, creatine kinase and aminotransferases were developed. A high sensitivity was achieved based on the cycling enzyme pairs hexokinase/pyruvate kinase for ATP and ADP, and lactate monooxygenase/malate dehydrogenase for malate and oxaloacetate, respectively. On the other hand, in a sensor for a large group of substances, the unspecific microsomal cytochrome P-450 system was applied.  相似文献   

18.
19.
Comprehensive two‐dimensional gas chromatography is a technique that is becoming more widespread within the analytical community, especially in the separation of complex mixtures. Modulation in comprehensive two‐dimensional gas chromatography can be achieved by manipulating temperature or flow and offers many advantages such as increased separation power, but one underutilized advantage is increased detectability due to the reduction of peak width from the use of a modulator. A flow modulator was used to selectively target analytes for increased detectability with a standard flame ionization detector operated at 100 Hz, without the need for cryogens or advanced modulation software. By the collection of the entire peak volume followed by peak transfer rather than further separation, an increase of 12 times in peak height and detectability was realized for the analytes tested using an internal loop modulator configuration. An external loop flow modulator configuration allowed for more volatile analytes (with k < 5), and demonstrated an analyte detectability enhancement factor of at least 6. The collection loop size can be readily increased with an external loop configuration to accommodate for these naturally broader peaks. This novel flow modulated targeted signal enhancement approach was applied to industrially significant analyses like the analysis of methanol in a hydrocarbon streams. Methanol was detected at 7 ppb with a conventional flame ionization detector and without the need for pre‐concentration.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号