首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The documentation and control of flow disturbances downstream of various open inlet contractions was the primary focus with which to evaluate a spatial sampling technique. An X-wire probe was rotated about the center of a cylindrical test section at a radius equal to one-half that of the test section. This provided quasi-instantaneous multi-point measurements of the streamwise and azimuthal components of the velocity to investigate the temporal and spatial characteristics of the flowfield downstream of various contractions. The extent to which a particular contraction is effective in controlling ingested flow disturbances was investigated by artificially introducing disturbances upstream of the contractions. Spatial as well as temporal mappings of various quantities are presented for the streamwise and azimuthal components of the velocity. It was found that the control of upstream disturbances is highly dependent on the inlet contraction; for example, reduction of blade passing frequency noise in the ground testing of jet engines should be achieved with the proper choice of inlet configurations.List of symbols K uv correlation coefficient= - P percentage of time that an azimuthal fluctuating velocity derivative dv/d is found - U streamwise velocity component U=U (, t) - V azimuthal or tangential velocity component due to flow and probe rotation V=V (, t) - mean value of streamwise velocity component - U m resultant velocity from and - mean value of azimuthal velocity component induced by rotation - u fluctuating streamwise component of velocity u=u(, t) - v fluctuating azimuthal component of velocity v = v (, t) - u phase-averaged fluctuating streamwise component of velocity u=u(0) - v phase-averaged fluctuating azimuthal component of velocity v=v() - û average of phase-averaged fluctuating streamwise component of velocity (u()) over cases I-1, II-1 and III-1 û = û() - average of phase-averaged fluctuating azimuthal component of velocity (v()) over cases I-1, II-1 and III-1 - u fluctuating streamwise component of velocity corrected for non-uniformity of probe rotation and/or phase-related vibration u = u(0, t) - v fluctuating azimuthal component of velocity corrected for non-uniformity or probe rotation and/or phase-related vibration v=v (, t) - u 2 rms value of corrected fluctuating streamwise component of velocity - rms value of corrected fluctuating azimuthal component of velocity - phase or azimuthal position of X-probe  相似文献   

2.
Two-phase flow in stratified porous media is a problem of central importance in the study of oil recovery processes. In general, these flows are parallel to the stratifications, and it is this type of flow that we have investigated experimentally and theoretically in this study. The experiments were performed with a two-layer model of a stratified porous medium. The individual strata were composed of Aerolith-10, an artificial: sintered porous medium, and Berea sandstone, a natural porous medium reputed to be relatively homogeneous. Waterflooding experiments were performed in which the saturation field was measured by gamma-ray absorption. Data were obtained at 150 points distributed evenly over a flow domain of 0.1 × 0.6 m. The slabs of Aerolith-10 and Berea sandstone were of equal thickness, i.e. 5 centimeters thick. An intensive experimental study was carried out in order to accurately characterize the individual strata; however, this effort was hampered by both local heterogeneities and large-scale heterogeneities.The theoretical analysis of the waterflooding experiments was based on the method of large-scale averaging and the large-scale closure problem. The latter provides a precise method of discussing the crossflow phenomena, and it illustrates exactly how the crossflow influences the theoretical prediction of the large-scale permeability tensor. The theoretical analysis was restricted to the quasi-static theory of Quintard and Whitaker (1988), however, the dynamic effects described in Part I (Quintard and Whitaker 1990a) are discussed in terms of their influence on the crossflow.Roman Letters A interfacial area between the -region and the -region contained within V, m2 - a vector that maps onto , m - b vector that maps onto , m - b vector that maps onto , m - B second order tensor that maps onto , m2 - C second order tensor that maps onto , m2 - E energy of the gamma emitter, keV - f fractional flow of the -phase - g gravitational vector, m/s2 - h characteristic length of the large-scale averaging volume, m - H height of the stratified porous medium , m - i unit base vector in the x-direction - K local volume-averaged single-phase permeability, m2 - K - {K}, large-scale spatial deviation permeability - { K} large-scale volume-averaged single-phase permeability, m2 - K * large-scale single-phase permeability, m2 - K ** equivalent large-scale single-phase permeability, m2 - K local volume-averaged -phase permeability in the -region, m2 - K local volume-averaged -phase permeability in the -region, m2 - K - {K } , large-scale spatial deviation for the -phase permeability, m2 - K * large-scale permeability for the -phase, m2 - l thickness of the porous medium, m - l characteristic length for the -region, m - l characteristic length for the -region, m - L length of the experimental porous medium, m - characteristic length for large-scale averaged quantities, m - n outward unit normal vector for the -region - n outward unit normal vector for the -region - n unit normal vector pointing from the -region toward the -region (n = - n ) - N number of photons - p pressure in the -phase, N/m2 - p 0 reference pressure in the -phase, N/m2 - local volume-averaged intrinsic phase average pressure in the -phase, N/m2 - large-scale volume-averaged pressure of the -phase, N/m2 - large-scale intrinsic phase average pressure in the capillary region of the -phase, N/m2 - - , large-scale spatial deviation for the -phase pressure, N/m2 - pc , capillary pressure, N/m2 - p c capillary pressure in the -region, N/m2 - p capillary pressure in the -region, N/m2 - {p c } c large-scale capillary pressure, N/m2 - q -phase velocity at the entrance of the porous medium, m/s - q -phase velocity at the entrance of the porous medium, m/s - Swi irreducible water saturation - S /, local volume-averaged saturation for the -phase - S i initial saturation for the -phase - S r residual saturation for the -phase - S * { }*/}*, large-scale average saturation for the -phase - S saturation for the -phase in the -region - S saturation for the -phase in the -region - t time, s - v -phase velocity vector, m/s - v local volume-averaged phase average velocity for the -phase, m/s - {v } large-scale averaged velocity for the -phase, m/s - v local volume-averaged phase average velocity for the -phase in the -region, m/s - v local volume-averaged phase average velocity for the -phase in the -region, m/s - v -{v } , large-scale spatial deviation for the -phase velocity, m/s - v -{v } , large-scale spatial deviation for the -phase velocity in the -region, m/s - v -{v } , large-scale spatial deviation for the -phase velocity in the -region, m/s - V large-scale averaging volume, m3 - y position vector relative to the centroid of the large-scale averaging volume, m - {y}c large-scale average of y over the capillary region, m Greek Letters local porosity - local porosity in the -region - local porosity in the -region - local volume fraction for the -phase - local volume fraction for the -phase in the -region - local volume fraction for the -phase in the -region - {}* { }*+{ }*, large-scale spatial average volume fraction - { }* large-scale spatial average volume fraction for the -phase - mass density of the -phase, kg/m3 - mass density of the -phase, kg/m3 - viscosity of the -phase, N s/m2 - viscosity of the -phase, Ns/m2 - V /V , volume fraction of the -region ( + =1) - V /V , volume fraction of the -region ( + =1) - attenuation coefficient to gamma-rays, m-1 - -   相似文献   

3.
In this paper we continue previous studies of the closure problem for two-phase flow in homogeneous porous media, and we show how the closure problem can be transformed to a pair of Stokes-like boundary-value problems in terms of pressures that have units of length and velocities that have units of length squared. These are essentially geometrical boundary value problems that are used to calculate the four permeability tensors that appear in the volume averaged Stokes' equations. To determine the geometry associated with the closure problem, one needs to solve the physical problem; however, the closure problem can be solved using the same algorithm used to solve the physical problem, thus the entire procedure can be accomplished with a single numerical code.Nomenclature a a vector that maps V onto , m-1. - A a tensor that maps V onto . - A area of the - interface contained within the macroscopic region, m2. - A area of the -phase entrances and exits contained within the macroscopic region, m2. - A area of the - interface contained within the averaging volume, m2. - A area of the -phase entrances and exits contained within the averaging volume, m2. - Bo Bond number (= (=(–)g2/). - Ca capillary number (= v/). - g gravitational acceleration, m/s2. - H mean curvature, m-1. - I unit tensor. - permeability tensor for the -phase, m2. - viscous drag tensor that maps V onto V. - * dominant permeability tensor that maps onto v , m2. - * coupling permeability tensor that maps onto v , m2. - characteristic length scale for the -phase, m. - l characteristic length scale representing both and , m. - L characteristic length scale for volume averaged quantities, m. - n unit normal vector directed from the -phase toward the -phase. - n unit normal vector representing both n and n . - n unit normal vector representing both n and n . - P pressure in the -phase, N/m2. - p superficial average pressure in the -phase, N/m2. - p intrinsic average pressure in the -phase, N/m2. - p p , spatial deviation pressure for the -phase, N/m2. - r 0 radius of the averaging volume, m. - r position vector, m. - t time, s. - v fluid velocity in the -phase, m/s. - v superficial average velocity in the -phase, m/s. - v intrinsic average velocity in the -phase, m/s. - v v , spatial deviation velocity in the -phase, m/s. - V volume of the -phase contained within the averaging volmue, m3. - averaging volume, m3. Greek Symbols V /, volume fraction of the -phase. - viscosity of the -phase, Ns/m2. - density of the -phase, kg/m3. - surface tension, N/m. - (v +v T ), viscous stress tensor for the -phase, N/m2.  相似文献   

4.
Zusammenfassung Mit Hilfe der Mischungswegtheorie wurden Gleichungen zur Berechnung der Geschwindigkeitsprofile und des Druckabfalles bei der turbulenten, abwärtsterichteten Gas/Film-Strömung aufgestellt. Zur Berechnung des Wärmeübergangs wurde die turbulente Temperaturleitfähigkeit aus einem halbempirischen Ansatz bestimmt. Es konnte eine befriedigende Übereinstimmung zwischen den berechneten und gemessenen Nußelt-Zahlen bei der Oberflächenverdampfung erzielt werden. Zur Auslegung von Fallstromverdampfern wurde ein Computerprogramm erstellt. Damit lassen sich Einflußgrößen wie Wandtemperatur, Filmdicke, Verdampfungsrate usw. in Abhängigkeit von der Lauflänge bestimmen.
Flow and heat transfer in surface evaporation and film condensation
Using the mixing length model, equations were established to calculate the velocity profiles and pressure drop in turbulent downward directed gas/film flow. The thermal diffusivity needed for the calculation of heat transfer was determined from a semiempirical model. The calculated Nußelt-numbers agreed very well with experiments. For the design of falling-film evaporators, a computer program was developed, which enables to evaluate wall temperature, film thickness, evaporation rate etc. as a function of flow-path length.

Formelzeichen a Temperaturleitfähigkeit - c spez. Wärmekapazität - d Durchmesser - fm bezogene mittlere turbulente Temperaturleitfähigkeit - Fi /(32/g)1/3) Filmkennzahl - Fr Froude-Zahl - g Fallbeschleunigung - Ka 3/g4 Kapitza-Zahl - L Rohrlänge - l Mischungsweg - m Massenstrom - Nu (2/g)1/3/ Nußelt-Zahl - Nu / Nußelt-Zahl des Filmes - p Druck - Pr /a Prandtl-Zahl - q Wärmestromdichte - R Radius - Re Reynolds-Zahl - Reü Übergangs-Reynolds-Zahl - Rew Schubspannungs-Reynolds-Zahl der Flüssigkeit - r radiale Koordinate - T Temperatur - u Geschwindigkeit - uw Schubspannungsgeschwindigkeit der Flüssigkeit - u Grenzflächengeschwindigkeit - uT Schubspannungsgeschwindigkeit des Gases - y Wandabstand - y* y/ dimensionsloser Wandabstand - z axiale Koordinate Griechische Zeichen Wärmeübergangskoeffizient - Filmdicke - dyn. Viskosität - dimensionslose Temperatur - Wärmeleitfähigkeit - kin. Viskosität - Dichte - Oberflächenspannung - Schubspannung Zusatzzeichen und Indizes G Gas - K Kondensation - s Sättigung - t turbulent - w Wand - wi Welleninstabilität - Phasengrenze - - mittlere Größe  相似文献   

5.
Zusammenfassung Die zum kontinuierlichen Austragen und Ausformen von strukturviskosen und anderen nicht-newtonschen Medien dienenden Schleppströmungspumpen lassen sich bei vorgegebenem Volumendurchsatz und Betriebsdruckp durch Anpassung des Arbeitsspaltesh und der Arbeitsdrehzahln energetisch optimal auslegen und betreiben. Die entsprechende Kennzahl ist der als Quotient aus Austriebs-Leistung p und AntriebsleistungP definierte Pumpwirkungsgrad . — Die optimalen (h, n, )-Werte werden unter der Voraussetzung berechnet, daß sich das Fließverhalten des geförderten Mediums durch einen Polynomansatz nachRabinowitsch beschreiben läßt. Dabei ergibt sich für die optimalen-Werte ein Bereich zwischen etwa 20% und 33%. Rheologische Ansätze mit einer auf eine mittlere Schergeschwindigkeit bezogenen konstanten scheinbaren Viskosität, welche in jedem Fall auf den für newtonsche Medien charakteristischen Idealwert=33% führen, sind hiernach für strukturviskose und andere nicht-newtonsche Medien unzulässig.
Summary Drag-flow pumps, as used for the continuous extrusion of non-Newtonian fluids, can be operated with minimum drive powerP at a given volume throughput and pressurep, if the radial dimensionh of the drag channel and working speedn are optimized. The key number of this optimization is the efficiency . — Appropriate (h, n, )-values are calculated on the basis of the rheological equation proposed byRabinowitsch. The optimum range of-values is found to be between 20% and 33%, whilst former calculations with an average apparent viscosity resulted in opt = 33% generally. Obviously, here is one of the causes of discrepancy between theoretical and actual efficiencies of such pumps.

Symbole a Stoffkennzahl, Gl. [3] - b Breite des Schleppspalts, Abb. 2 - c Stoffkennzahl, Gl. [3] - C 1 Integrationskonstante, Gl. [5] - C 2 Integrationskonstante, Gl. [8] - d Durchmesser des rotierenden Elements, Abb. 1 - e spezifische Antriebsleistung, Gl. [18] - h Höhe (Radialmaß) des Schleppspalts, Abb. 1 - k Anzahl der Schleppspalte - m Fließexponent im Potenzansatz - Massedurchsatz - M d Drehmoment - n Umdrehungsgeschwindigkeit, Arbeitsdrehzahl des rotierenden Elements, Abb. 1 - p Betriebsdruck - p Druckgradient, Gl. [6] - P aufgenommene Antriebsleistung - r radiale Koordinate - r i=d/2 – h Innenradius des rotierenden Elements - r a=d/2 Außenradius des rotierenden Elements - s zirkulare Länge des Schleppspalts - t (mittlere) Verweilzeit des Mediums im Schleppspalt - T Temperatur - v lokale zirkulare Geschwindigkeit - v 0 Umfangsgeschwindigkeit des rotierenden Elements, Abb. 1 - V Volumen des Schleppspalts - Volumendurchsatz der Schleppströmungspumpe - Volumendurchsatz der Druck(gradienten)strömung - Volumendurchsatz der Schleppströmung - dimensionslose Kennzahl, Gl. [22] - Schergeschwindigkeit, Gl. [2] - dimensionsloser Pumpwirkungsgrad, Gl. [1] - µ Scherviskosität - Dichte - Schubspannung, Gl. [2] - zirkulare Koordinate - Fluidität im Potenzansatz - Winkelgeschwindigkeit Erweiterte Fassung eines Vortrages anläßlich des 5. Stuttgarter Kunststoff-Kolloquiums vom 2. März 1977.Mit 14 Abbildungen  相似文献   

6.
The steady periodic temperature distribution in an infinitely long solid cylinder crossed by an alternating current is evaluated. First, the time dependent and non-uniform power generated per unit volume by Joule effect within the cylinder is determined. Then, the dimensionless temperature distribution is obtained by analytical methods in steady periodic regime. Dimensionless tables which yield the amplitude and the phase of temperature oscillations both on the axis and on the surface of copper or nichrome cylindrical electric resistors are presented.
Wärmeleitung in einem stromdurchflossenen Zylinder unter Berücksichtigung des Skin-Effektes
Zusammenfassung Es wird die periodische Temperaturverteilung für den eingeschwungenen Zustand in einem unendlich langen, von Wechselstrom durchflossenen Vollzylinder ermittelt. Zuerst erfolgt die Bestimmung der zeitabhängigen, nichgleichförmigen Energiefreisetzung pro Volumeneinheit des Zylinders infolge Joulescher Wärmeentwicklung und anschließend die Ermittlung der quasistationären Temperaturverteilung auf analytischem Wege. Amplitude und Phasenverzögerung der Temperaturschwingungen werden für die Achse und die Oberfläche eines Kupfer- oder Nickelchromzylinders tabellarisch in dimensionsloser Form mitgeteilt.

Nomenclature A integration constant introduced in Eq. (2) - ber, bei Thomson functions of order zero - Bi Biot numberhr 0/ - c speed of light in empty space - c 1,c 2 integration constants introduced in Eq. (46) - c p specific heat at constant pressure - E electric field - E z component ofE alongz - E time independent part ofE, defined in Eq. (1) - f function ofs and defined in Eq. (11) - g function ofs and defined in Eq. (37) - h convection heat transfer coefficient - H magnetic field - i imaginary uniti=(–1)1/2 - I electric current - I eff effective electric currentI eff=I/21/2 - Im imaginary part of a complex number - J n Bessel function of first kind and ordern - J electric current density - q g power generated per unit volume - time average of the power generated per unit volume - time averaged power per unit length - r radial coordinate - R electric resistance per unit length - r 0 radius of the cylinder - Re real part of a complex number - s dimensionless radial coordinates=r/r 0 - s, s integration variables - t time - T temperature - time averaged temperature - T f fluid temperature outside the boundary layer - time average of the surface temperature of the cylinder - u, functions ofs, and defined in Eqs. (47) and (48) - W Wronskian - x position vector - x real variable - Y n Bessel function of second kind and ordern - z unit vector parallel to the axis of the cylinder - z axial coordinate - · modulus of a complex number - equal by definition Greek symbols amplitude of the dimensionless temperature oscillations - electric permittivity - dimensionless temperature defined in Eq. (16) - 0, 1, 2 functions ofs defined in Eq. (22) - thermal conductivity - dimensionless parameter=(2)1/2 - magnetic permeability - 0 magnetic permeability of free space - function of defined in Eq. (59) - dimensionless parameter=c p/() - mass density - electric conductivity - dimensionless time=t - phase of the dimensionless temperature oscillations - function ofs:= 1+i 2 - angular frequency - dimensionless parameter=()1/2 r 0  相似文献   

7.
The delay differential equation
with >0 and smooth real functions f, r satisfying f(0)=0, f<0, and r(0)=1 models a system governed by state-dependent delayed negative feedback and instantaneous damping. For a suitable R1 the solutions generate a semiflow F on a compact subset LK of C([–R, 0], ). F leaves invariant the subset S of LK with at most one sign change on all subintervals of [–R, 0] of length one. The induced semiflow on S has a global attractor \{0} coincides with the set of segments of bounded globally defined slowly oscillating solutions. If {0}, then is homeomorphic to the closed unit disk, and the unit circle corresponds to a periodic orbit.  相似文献   

8.
We consider singularly perturbed systems , such that=f(, o, 0). o m , has a heteroclinic orbitu(t). We construct a bifurcation functionG(, ) such that the singular system has a heteroclinic orbit if and only ifG(, )=0 has a solution=(). We also apply this result to recover some theorems that have been proved using different approaches.  相似文献   

9.
Mathematical results are derived for the schlieren and shadowgraph contrast variation due to the refraction of light rays passing through two-dimensional compressible vortices with viscous cores. Both standard and small-disturbance solutions are obtained. It is shown that schlieren and shadowgraph produce substantially different contrast profiles. Further, the shadowgraph contrast variation is shown to be very sensitive to the vortex velocity profile and is also dependent on the location of the peak peripheral velocity (viscous core radius). The computed results are compared to actual contrast measurements made for rotor tip vortices using the shadowgraph flow visualization technique. The work helps to clarify the relationships between the observed contrast and the structure of vortical structures in density gradient based flow visualization experiments.Nomenclature a Unobstructed height of schlieren light source in cutoff plane, m - c Blade chord, m - f Focal length of schlieren focusing mirror, m - C T Rotor thrust coefficient, T/( 2 R 4) - I Image screen illumination, Lm/m 2 - l Distance from vortex to shadowgraph screen, m - n b Number of blades - p Pressure,N/m 2 - p Ambient pressure, N/m 2 - r, , z Cylindrical coordinate system - r c Vortex core radius, m - Non-dimensional radial coordinate, (r/r c ) - R Rotor radius, m - Tangential velocity, m/s - Specific heat ratio of air - Circulation (strength of vortex), m 2/s - Non-dimensional quantity, 2 82p r c 2 - Refractive index of fluid medium - 0 Refractive index of fluid medium at reference conditions - Gladstone-Dale constant, m 3/kg - Density, kg/m 3 - Density at ambient conditions, kg/m 3 - Non-dimensional density, (/ ) - Rotor solidity, (n b c/ R) - Rotor rotational frequency, rad/s  相似文献   

10.
The theory of a vibrating-rod densimeter   总被引:1,自引:0,他引:1  
The paper presents a theory of a device for the accurate determination of the density of fluids over a wide range of thermodynamic states. The instrument is based upon the measurement of the characteristics of the resonance of a circular section tube, or rod, performing steady, transverse oscillations in the fluid. The theory developed accounts for the fluid motion external to the rod as well as the mechanical motion of the rod and is valid over a defined range of conditions. A complete set of working equations and corrections is obtained for the instrument which, together with the limits of the validity of the theory, prescribe the parameters of a practical design capable of high accuracy.Nomenclature A, B, C, D constants in equation (60) - A j , B j constants in equation (18) - a j + , a j wavenumbers given by equation (19) - C f drag coefficient defined in equation (64) - C f /0 , C f /1 components of C f in series expansion in powers of - c speed of sound - D b drag force of fluid b - D 0 coefficient of internal damping - E extensional modulus - force per unit length - F j + , F j constants in equation (24) - f, g functions of defined in equations (56) - G modulus of rigidity - I second moment of area - K constant in equation (90) - k, k constants defined in equations (9) - L half-length of oscillator - Ma Mach number - m a mass per unit length of fluid a - m b added mass per unit length of fluid b - m s mass per unit length of solid - n j eigenvalue defined in equation (17) - P power (energy per cycle) - P a , P b power in fluids a and b - p pressure - R radius of rod or outer radius of tube - R c radius of container - R i inner radius of tube - r radial coordinate - T tension - T visc temperature rise due to heat generation by viscous dissipation - t time - v r , v radial and angular velocity components - y lateral displacement - z axial coordinate - dimensionless tension - a dimensionless mass of fluid a - b dimensionless added mass of fluid b - b dimensionless drag of fluid b - dimensionless parameter associated with - 0 dimensionless coefficient of internal damping - dimensionless half-width of resonance curve - dimensionless frequency difference defined in equation (87) - spatial resolution of amplitude - R, , , s , increments in R, , , s , - dimensionless amplitude of oscillation - dimensionless axial coordinate - ratio of to - a , b ratios of to for fluids a and b - angular coordinate - parameter arising from distortion of initially plane cross-sections - f thermal conductivity of fluid - dimensionless parameter associated with - viscosity of fluid - a , b viscosity of fluids a and b - dimensionless displacement - j jth component of - density of fluid - a , b density of fluids a and b - s density of tube or rod material - density of fluid calculated on assumption that * - dimensionless radial coordinate - * dimensionless radius of container - dimensionless times - rr rr, r radial normal and shear stress components - spatial component of defined in equation (13) - j jth component of - dimensionless streamfunction - 0, 1 components of in series expansion in powers of - phase angle - r phase difference - ra , rb phase difference for fluids a and b - streamfunction - j jth component defined in equation (22) - dimensionless frequency (based on ) - a , b dimensionless frequency in fluids a and b - s dimensionless frequency (based on s ) - angular frequency - 0 resonant frequency in absence of fluid and internal damping - r resonant frequency in absence of internal fluid - ra , rb resonant frequencies in fluids a and b - dimensionless frequency - dimensionless frequency when a vanishes - dimensionless frequencies when a vanishes in fluids a and b - dimensionless resonant frequency when a , b, b and 0 vanish - dimensionless resonant frequency when a , b and b vanish - dimensionless resonant frequency when b and b vanish - dimensionless frequencies at which amplitude is half that at resonance  相似文献   

11.
The influence of maneuvering on the chaotic response of a fluttering buckled plate on an aircraft has been studied. The governing equations, derived using Lagrangian mechanics, include geometric non-linearities associated with the occurrence of tensile stresses, as well as coupling between the angular velocity of the maneuver and the elastic degrees of freedom. Numerical simulation for periodic and chaotic responses are conducted in order to analyze the influence of the pull-up maneuver on the dynamic behavior of the panel. Long-time histories phase-plane plots, and power spectra of the responses are presented. As the maneuver (load factor) increases, the system exhibits complicated dynamic behavior including a direct and inverse cascade of subharmonic bifurcations, intermittency, and chaos. Beside these classical routes of transition from a periodic state to chaos, our calculations suggest amplitude modulation as a possible new mode of transition to chaos. Consequently this research contributes to the understanding of the mechanisms through which the transition between periodic and strange attractors occurs in, dissipative mechanical systems. In the case of a prescribed time dependent maneuver, a remarkable transition between the different types of limit cycles is presented.Nomenclature a plate length - a r u r /h - D plate bending stiffness - E modulus of elasticity - g acceleration due to gravity - h plate thickness - j1,j2,j3 base vectors of the body frame of reference - K spring constant - M Mach number - n 1 + 0/g - N 1 applied in-plane force - pp aerodynamic pressure - P pa 4/Dh - q 0/2 - Q r generalized Lagrangian forces - R rotation matrix - R 4 N, a 2/D - t time - kinetic energy - u plate deflection - u displacement of the structure - u r modal amplitude - v0 velocity - x coordinates in the inertial frame of reference - z coordinates in the body frame of reference - Ka/(Ka+Eh) - - elastic energy - 2qa 3/D - a/mh - Poisson's ratio - material coordinates - air density - m plate density - - r prescribed functions - r sin(r z/a) - angular velocity - a/v0 - skew-symmetric matrix form of the angular velocity  相似文献   

12.
The mixed convection flow in a vertical duct is analysed under the assumption that , the ratio of the duct width to the length over which the wall is heated, is small. It is assumed that a fully developed Poiseuille flow has already been set up in the duct before heat from the wall causes this to be changed by the action of the buoyancy forces, as measured by a buoyancy parameter . An analytical solution is derived for the case when the Reynolds numberRe, based on the duct width, is of 0 (1). This is extended to the case whenRe is 0 (–1) by numerical integrations of the governing equations for a range of values of representing both aiding and opposing flows. The limiting cases, || 1 andR=Re of 0 (1), andR and both large, with of 0 (R 1/3) are considered further. Finally, the free convection limit, large with R of 0 (1), is discussed.
Mischkonvektion in engen senkrechten Rohren
Zusammenfassung Mischkonvektion in einem senkrechten Rohr wird unter der Voraussetzung untersucht, daß das Verhältnis der Rohrbreite zur Länge, über welche die Wand beheizt wird, klein ist. Es wird angenommen, daß sich bereits eine voll entwickelte Poiseuille-Strömung in dem Rohr eingestellt hat, bevor Antriebskräfte, gemessen mit dem Auftriebsparameter , aufgrund der Wandbeheizung die Strömung verändern. Es wird eine analytische Lösung für den Fall erhalten, daß die mit der Rohrbreite als charakteristische Länge gebildete Reynolds-ZahlRe konstant ist. Dies wird mittels einer numerischen Integration der wichtigsten Gleichungen auf den FallRe =f (–1) sowohl für Gleich- als auch für Gegenstrom ausgedehnt. Weiterhin werden die beiden Grenzfälle betrachtet, wenn || 1 undR=Re konstant ist, sowieR und beide groß mit proportionalR 1/3. Schließlich wird der Grenzfall der freien Konvektion, großes mit konstantem R, diskutiert.

Nomenclature g acceleration due to gravity - Gr Grashof number - G modified Grashof number - h duct width - l length of the heated section of the duct wall - p pressure - Pr Prandtl number - Q flow rate through the duct - Q 0 heat transfer on the wally=0 - Q 1 heat transfer on the wally=1 - Re Reynolds number - R modified Reynolds number - T temperature of the fluid - T 0 ambient temperature - T applied temperature difference - u, velocity component in thex-direction - v, velocity component in they-direction - x, co-ordinate measuring distance along the duct - y, co-ordinate measuring distance across the duct - buoyancy parameter - 0 modified buoyancy parameter, 0=R –1/3 - coefficient of thermal expansion - ratio of duct width to heated length, =h/l - (non-dimensional) temperature - w applied temperature on the wally=0 - kinematic viscosity - density of the fluid - 0 shear stress on the wally=0 - 1 shear stress on the wally=1 - stream function  相似文献   

13.
Zusammenfassung In einem Dehnungsrheometer werden Spannungs-Dehnungs-Diagramme von Polyäthylen-Schmelzen bei 150 °C und bei konstanter Dehnungsgeschwindigkeit gemessen ( zwischen 0,001 und 1 sec–1). Weiterhin wird der reversible (elastische) Dehnungsanteil bestimmt. Messungen mit einem Dehnungstester für Kunststoff-Schmelzen ergänzen die Ausführungen.Die Ergebnisse zeigen deutlich, daß bei Dehnung mit zunehmender Verformungsgeschwindigkeit die Dehnungsviskosität nicht abnimmt, im Gegensatz zu dem bekannten strukturviskosen Verhalten bei Scherung.Bei Dehnungen bis zu=1 kann das Verhalten unabhängig von beschrieben werden, wenn als viskoelastische Materialfunktion die Dehnungs-Spannviskosität betrachtet wird. In diesem Bereich von gilt dabei die BeziehungT(t)=3 s (t) mit s (t) als zeitabhängige Scherviskosität im linear-viskoelastischen Bereich.Bei größeren Dehnungen und nicht zu kleinen Dehnungsgeschwindigkeiten zeigt verzweigtes Polyäthylen eine zusätzliche starke Spannungszunahme. In dem Bereich dieser zusätzlichen Verfestigung ist das Verhalten im wesentlichen eine Funktion der Dehnung und fast unabhängig von . Die zusätzliche Verfestigung scheint eine Folge der Verzweigungsstruktur des verzweigten Polyäthylens zu sein, da bei Linear-PE ein derartiger Verlauf des Spannungs-Dehnungs-Diagramms nicht beobachtet wird.Die Betrachtung des reversiblen Dehnungsanteils R zeigt bei der ausführlich untersuchten Schmelze I (verzweigtes PE) drei verschiedene Bereiche: Unterhalb einer Grenzdehnungsgeschwindigkeit ist R =0, unterhalb einer Versuchszeitt ** ist R =. Im dazwischenliegenden Bereich treten elastische und viskose Dehnungsanteile auf,= R + V , wobei für niedrige gilt, daß R lg . Die Grenze wird der Frequenz der thermisch aktivierten Platzwechsel zugeordnet,t ** erscheint als Zeit, innerhalb der die Verhakungen wie fixierte Vernetzungen wirken.In dem Anhang wird der Einfluß der Grenzflächenspannung zwischen PE-Schmelze und Silikonöl auf die Ergebnisse der Dehnungsversuche diskutiert.
Summary Stress-strain relations for different PE melts are measured at 150 °C in an extensional rheometer under the condition of a constant extensional strain rate ( between 0,001 and 1 sec–1). Further, the recoverable (elastic) portion R of the total strain ( in Hencky's measure) is determined and additional measurements with a tensile tester for polymer melts are described.The results show clearly that in extension there is no decrease of the tensile viscosity with increasing deformation rate, in contrast to the well-known pseudoplastic behaviour in shear. Within total strains<1 the tensile behaviour can be described independently from by means of a viscoelastic material function called stressing viscosity . In this range of the relation T (t)=3 s (t) holds, where s (t) is the stressing viscosity in shear in the linear viscoelastic range. For larger tensile strains and not too small branched PB shows a remarkable increase in stress. This work-hardening behaviour is mainly a function of and almost independent from . This additional hardening seems to be due to the branches in branched PE, because linear PE does not show this effect.The discussion of the recoverable tensile strain R gives three regions of tensile rate: Below a critical there is R =0. At times shorter thant ** the equation R = is valid. Within these limits both elastic and viscous portions of the total strain= R + V exist. may correlate with the frequency of the thermally activated position changes of the molecular segments.t ** is assumed to be the time for the entanglements to act as fixed cross-links.In the appendix the influence of the interface tension between PE melt and silicone oil on the results of the tensile experiments is discussed.


Vorgetragen auf der Deutschen Rheologen-Tagung, Berlin, 11.-13. Mai 1970.

An der Weiterentwicklung des Dehnungsrheometers, an der Durchführung und Auswertung der Messungen waren die HerrenB. Kienle, F. Landmesser, M, Reuther undF. Scherr beteiligt. Herr Dr.F.Ramsteiner und HerrH. Schroeck haben sich um die Herstellung der Stränge aus Linear-PE bemüht. Herr Dr.W. Ball besorgte die GPC-Messungen und Herr Dr.P. Simak die Ultrarot-Untersuchung. Den vorgenannten Herren sei für ihre Hilfe beim Zustandekommen dieser Arbeit gedankt. Herrn Dr.H. Baur danke ich für wertvolle Diskussionen.  相似文献   

14.
We prove that the iterates of certain periodic nonexpansive operators in l1 uniformly converge to zero in l norm. As a by-product we show that, for any solution x(t) of the equation x(t)= –sign(x(t-1))f(x()), t0, x|[–1,0]C[–1,0] where f:(–1, 1) is locally Lipschitz, the number of zeros of x(t) on any unit interval becomes finite after a period of time, with the single exception of the case f(0)=0 and x(t)0.  相似文献   

15.
A three-parameter model describing the shear rate-shear stress relation of viscoelastic liquids and in which each parameter has a physical significance, is applied to a tangential annular flow in order to calculate the velocity profile and the shear rate distribution. Experiments were carried out with a 5000 wppm aqueous solution of polyacrylamide and different types of rheometers. In a shear-rate range of seven decades (5 10–3 s–1 < < 1.2 105 s–1) a good agreement is obtained between apparent viscosities calculated with our model and those measured with three different types of rheometers, i.e. Couette rheometers, a cone-and-plate rheogoniometer and a capillary tube rheometer. a physical quantity defined by:a = {1 – ( / 0)}/ 0 (Pa–1) - C constant of integration (1) - r distancer from the center (m) - r 1,r 2 radius of the inner and outer cylinder (m) - v r local tangential velocity at a distancer from the center (v r = r r) (m s–1) - v 2 local tangential velocity at a distancer 2 from the center (m s–1) - shear rate (s–1) - local shear rate (s–1) - 1 wall shear rate at the inner cylinder (s–1) - dynamic viscosity (Pa s) - a apparent viscosity (a = / ) (Pa s) - a1 apparent viscosity at the inner cylinder (Pa s) - 0 zero-shear viscosity (Pa s) - infinite-shear viscosity (Pa s) - shear stress (Pa) - r local shear stress at a distancer from the center (Pa) - 0 yield stress (Pa) - 1, 2 wall shear-stress at the inner and outer cylinder (Pa) - r local angular velocity (s–1) - 2 angular velocity of the outer cylinder (s–1)  相似文献   

16.
Summary A simple and reliable relative method to derive the molecular weight distribution of linear polymers is proposed.It is shown that both the zero-shear viscosity, 0, and the intrinsic viscosity, [], have a logarithmic dependence on the weight average molecular weight, , and the polydispersity, . The coefficients of these relationships can be determined by applying a multiple regression analysis to a series of samples for which andQ are known.By making use of the two established relationships, the determination of andQ for a given polymer sample reduces to the experimental measurement of its 0 and [].An analysis has been performed to estimate to what extent experimental errors on 0 and [] affect the calculated molecular weight distribution.It has been found that only the experimental error on [] contributes heavily to the final error on the polydispersity.
Zusammenfassung Es wird eine einfache und zuverlässige Relativmethode vorgeschlagen, um die Uneinheitlichkeit linearer Polymere abzuleiten.Es wird gezeigt, daß alle beide, Nullschergradient-viskosität 0, und Grenzviskositätszahl [], einfach logarithmisch vom Gewichtsmittel des Molekulargewichts , und vom Polymolekularitätsindex , abhängig sind.Die Koeffizienten dieser Beziehungen können mit statistischer Analyse festgesetzt werden, wenn undQ einer Probenreihe bekannt sind.Mit den zwei vorher festgesetzten Beziehungen besteht die Bestimmung von undQ einer gegebenen Polymersprobe nur aus den experimentellen Massen seiner 0- und []-Werte.Eine Analyse wurde ausgeführt, um die Bedeutung des experimentellen Irrtums über die berechnete Uneinheitlichkeit zu wissen.Es wurde gefunden, daß ein experimenteller Irrtum betreffs [] schwer an endlichem Irrtum der Uneinheitlichkeit teilnimmt.


With 2 figures and 2 tables  相似文献   

17.
Zusammenfassung Durch die Phasenverteilung von Flüssigkeit und Dampf ergeben sich im horizontalen Verdampferrohr i.a. unterschiedliche lokale Wärmeübergangskoeffizienten (WÜK) am Rohrumfang. Die beiden technisch vorkommenden Randbedingungen — konstante Wärmestromdichte und konstante WandemperaturT W am Rohrinnendurchmesser — können unterschiedliche Auswirkungen auf umfangsgemittelte WÜK haben. Während bei konstanter aufgeprägter Wärmestromdichte ein interner Transport der zu übertragenden Wärmemenge durch die Wärmeleitung der Wand erfolgen kann, ist dies beiT W =konst. nicht möglich. Die Ergebnisse zeigen, daß sich der umfangsgemittelte WÜK bei konstanter Wärmestromdichte gegenüber dem Wert bei konstanter Wandtemperatur verringert. Dies ist jedoch nur dann der Fall, wenn der Rohrumfang unvollständig benetzt ist. Dabei hängt die Verminderung des umfangsgemittelten WÜK stark vom Wärmeleitvermögen der Wand, s, ab ( Wärmeleitfähigkeit,s Wandstärke). Es wurde festgestellt, daß die Verminderung sowohol aus der höheren Wandtemperatur am Rohrscheitel als auch aus der Änderung des benetzten Umfangs resultiert, da dann der Anteil des Rohrumfangs mit schlechtem Wärmeübergang vergrößert wird.
Effect of thermal boundary conditions on heat transfer in a horizontal evaporator tube
As a result of the non uniform phase distribution of liquid and vapour local heat transfer coefficients vary considerably along the circumference in a horizontal evaporator tube. It was expected that both modes of heating, uniform heat flux ( = const) and uniform inside wall temperature (T W =const), lead to different circumferential averaged heat transfer coefficients (HTC). The experiments show that the circumferential averaged HTC is lower in the case of uniform heat flux compared to the value of uniform wall temperature if the perimeter of the tube is only partly wetted. However, the reduction is affected by circumferential heat conduction. This reduction is a result of both, the higher wall temperature on the top of the tube and the reduction of the wetted perimeter.

Formelzeichen a Verhältnis von -Werten - c p spezifische Wärmekapazität - C F Faktor - d Innendurchmesser - g Fallbeschleunigung - h v spezifische Verdampfungsenthalpie - Massenstromdichte - M Rippenkenngröße - n Exponent der Wärmestromdichte - Nu Nusselt-Zahl - p Druck - p k Kritischer Druck - p* reduzierter Druck (p/p k ) - Pr L Prandtl-Zahl Flüssigkeit ( c p /) - Pr G Prandtl-Zahl Dampf ( c p /) - Wärmestromdichte - r Radius - Re Reynolds-Zahl - R p Glättungstiefe nach DIN 4762 - s Wandstärke - T Temperatur - Strömungsdampfgehalt - z Koordinate in Strömungsrichtung - Wärmeübergangskoeffizient - Differenz - Dampfvolumenanteil - dynamische Viskosität - Faktor - Wärmeleitfähigkeit - Druckverlustbeiwert - Dichte - Oberflächenspannung - normierter unbenetzter Bogen - Zentriwinkel - unbenetzter Bogen - Funktion - Faktor Indizes B Blasensieden - G Dampf - G0 gesamte Massenstromdichte als Dampf - k konvektives Strömungssieden - kr kritische Größe - L Flüssigkeit - Lb mit Flüssigkeit benetzt - L0 gesamte Massenstromdichte als Flüssigkeit - s Siedezustand - W Wand - gesättigte Flüssigkeit - gesättigter Dampf - – Mittelwert Herrn Prof. Dr.-Ing. Dr. h.c./INPL E.-U. Schlünder zum 60. Geburtstag gewidmet  相似文献   

18.
Summary An elastically supported beam of infinite length, initially at rest, carries a variable concentrated force at a prescribed point A. General expressions are given for the deflection and the bending moment at A (6.3 and 6.4). Three special cases are considered; the first one is defined by =0 for and =K=const. for ; the second one by =0 for 0 > > , given function of for 0 ; the third one applies to problems in which, during the period of impact, itself is an unknown. The results given here may be of use in those railway-engineering problems in which a rail can be considered as a beam of infinite length, and in which the supporting ground has the required properties.  相似文献   

19.
The characteristics of helium jets injected normally to a swirling air flow are investigated experimentally using laser Doppler and hot-wire anemometers. Two jets with jet-to-crossflow momentum flux ratios of 0.28 and 12.6 are examined. The jets follow a spiral path similar to that found in the swirling air flow alone. Swirl acts to decrease jet penetration, but this is being counteracted by the lighter jet fluid density which is being pressed towards the tube center by the inward pressure gradient. Consequently, in spite of the large variation in momentum flux ratio, jet penetration into the main flow for the two jets investigated is about the same. The presence of the jet is felt only along the spiral path and none at all outside this region. Upstream of the jet, the oncoming swirling flow is essentially unaffected. These characteristics are quite different from jets discharging into a uniform crossflow at about the same momentum flux ratios, and can be attributed to the combined effects of swirl and density difference between the jet fluid and the air stream. Finally, the jets lose their identity in about fifteen jet diameters.List of symbols C mean volume concentration of helium - C j mean volume concentration of helium at jet exit - c fluctuating volume concentration of helium - instantaneous volume concentration of helium - c RMS volume concentration of helium - D j jet nozzle diameter - D T diameter of tube - F flatness factor of c - J = j U j 2 / a U a gn 2 jet-to-crossflow momentum flux ratio - P(c) probability density function of c - r radial coordinate measured from tube centerline - R = D T /2 radius of tube - Re j = D j U j / j jet Reynolds number - S = = tan swirl number - Sk skewness of c - instantaneous axial velocity - u RMS axial velocity - U mean axial velocity - local average mean axial velocity across tube - U j jet exit velocity - U a overall average mean axial velocity across tube - instantaneous circumferential velocity - w RMS circumferential velocity - W mean circumferential velocity - x axial coordinate measured from exit plane of swirler - x 1 axial coordinate measured from centerplane of normal jet - y normal distance measured from tube wall - j jet fluid kinematic viscosity - a air density - j jet fluid density - vane angle (constant)  相似文献   

20.
The rapidly forced pendulum equation with forcing sin((t/), where =<0p,p = 5, for 0, sufficiently small, is considered. We prove that stable and unstable manifolds split and that the splitting distanced(t) in the ( ,t) plane satisfiesd(t) = sin(t/) sech(/2) +O( 0 exp(–/2)) (2.3a) and the angle of transversal intersection,, in thet = 0 section satisfies 2 tan/2 = 2S s = (/2) sech(/2) +O(( 0 /) exp(–/2)) (2.3b) It follows that the Melnikov term correctly predicts the exponentially small splitting and angle of transversality. Our method improves a previous result of Holmes, Marsden, and Scheuerle. Our proof is elementary and self-contained, includes a stable manifold theorem, and emphasizes the phase space geometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号