首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An already well-established recognition motif-namely one in which the NH2+ centers in the rod sections of the dumbbell components of rotaxanes are encircled by macrocyclic polyether components-has been turned simultaneously outside-in and inside-out, a fact that has been proved beyond any doubt by the stoppering of both ends of a [2]pseudorotaxane to give a stable [2]rotaxane. The [2]pseudorotaxane is formed in nitromethane when a benzylic dibromide, obtained after reacting an excess of 1,4-bis(bromomethyl)benzene with hexaethylene glycol, is added to an equimolar amount of a dicationic cyclophane in which two -CH2OCH2- chains link a pair of dibenzylammonium ions through the para positions on their phenyl rings. When the [2]pseudorotaxane is reacted in nitromethane with triphenylphosphine, a [2]rotaxane and the corresponding free dumbbell compound are isolated in 58 and 31% yields, respectively. The structure of the [2]rotaxane is established by using mass spectrometry (FABMS and ESMS) and NMR (1H and 13C) spectroscopy in nitromethane-d3. The [2]rotaxane exhibits quite dramatic changes in the 1H chemical shifts of the signals for its CH2N+ and CH2O protons compared with those in the free dumbbell compound. The 1H NMR spectrum of the [2]pseudorotaxane shows many similar features. Titration experiments with three of the six different CH2O probes give an average Ka value of 2900 +/- 750 M-1 in nitromethane-d3. The new recognition motif for the template-directed synthesis of rotaxanes can now be exploited at both the molecular and macromolecular levels of structure with numerous potential applications in sight.  相似文献   

2.
A synthetic approach to the preparation of [2]rotaxanes (1-5·6PF(6)) incorporating bispyridinium derivatives and two 1,5-dioxynaphthalene (DNP) units situated in the rod portions of their dumbbell components that are encircled by a single cyclobis(paraquat-p-phenylene) tetracationic (CBPQT(4+)) ring has been developed. Since the π-electron-deficient bispyridinium units are introduced into the dumbbell components of the [2]rotaxanes 1-5·6PF(6), there are Coulombic charge-charge repulsions between these dicationic units and the CBPQT(4+) ring in the [2]rotaxanes. Thus, the CBPQT(4+) rings in the degenerate [2]rotaxanes exhibit slow shuttling between two DNP recognition sites on the (1)H NMR time-scale on account of the electrostatic barrier posed by the bispyridinium units, as demonstrated by variable-temperature (1)H NMR spectroscopy. Electrochemical experiments carried out on the [2]rotaxanes 1·6PF(6) and 2·6PF(6) indicate that the one-electron reduced bipyridinium radical cation in the dumbbell components of the [2]rotaxanes serves as an additional recognition site for the two-electron reduced CBPQT(2(˙+)) diradical cationic ring. Under appropriate conditions, the ring components in the degenerate rotaxanes 1·6PF(6) and 2·6PF(6) can shuttle along the recognition sites--two DNP units and one-electron reduced bipyridinium radical cation--under redox control.  相似文献   

3.
Hydrogen bonded arylamide foldamers have been introduced in switchable pseudo[2]rotaxanes and [2]rotaxanes, which also include a cyclobisparaquat(p-phenylene) (CBPQT4+) ring and a ‘dumbbell’ containing tetrathiafulvalene (TTF) and 1,5-dioxynaphthalene (DNP, for rotaxanes). The foldamer size changes through folding and unfolding serve as a steric handle to modulate the mechanical movement of the CBPQT4+ ring along the dumbbell of the pseudo[2]rotaxanes and [2]rotaxanes. By varying the number of the repeating units in the foldamer, the kinetics of the solvent-dependent slippage/deslippage of pseudo[2]rotaxanes and the switching of the ring between TTF and DNP of the [2]rotoxanes can be tuned remarkably, with the time scope ranging from several minutes to several days, in twelve solvents of varying polarity, which have been confirmed by the 1H NMR, UV–vis spectroscopy, and cyclic voltammogram experiments.  相似文献   

4.
Herein, we report a “threading followed by shrinking” approach for the synthesis of rotaxanes by using an “oxygen‐deficient” macrocycle that contained two arylmethyl sulfone units and the dumbbell‐shaped salt bis(3,5‐dimethylbenzyl)ammonium tetrakis(3,5‐trifluoromethylphenyl)borate as the host and guest components, respectively. The extrusion of SO2 from both of the arylmethyl sulfone units of the macrocyclic component in the corresponding [2]pseudorotaxane resulted in a [2]rotaxane that was sufficiently stable to maintain its molecular integrity in CD3SOCD3 at 393 K for at least 5 h.  相似文献   

5.
This article reviews our recent studies on structure and properties of rotaxanes and pseudorotaxanes with Fe-, Pd- and Pt-containing complexes as the axle component. Electrochemical oxidation of ferrocenylmethylamine in the presence of a hydrogen radical precursor induces formal protonation of the amino group and produces a pseudorotaxane of the resulting ammonium species with a crown ether. Single crystals of the ferrocene-containing pseudorotaxane undergo a thermal crystalline phase transition accompanied by changes in the optical properties of the crystals. X-Ray crystallographic studies of the low- and high-temperature phases revealed different intermolecular interactions and orientations of the aromatic rings in the crystalline state depending on the temperature. End-capping of the ferrocene-containing [2]pseudorotaxane using a cross-metathesis reaction yields [2]rotaxane under mild conditions. A rotaxane having a platinum-carboxylate complex as its axle is converted into related organic and inorganic rotaxanes by partial dissociation of the Pt-O bond. An N-alkylbipyridinium forms [3]pseudorotaxane with alpha-cyclodextrin (alpha-CD), and it reacts with platinum and palladium complexes to form the corresponding [5]rotaxanes containing four alpha-cyclodextrin moieties. Complexes without alpha-CD components form micelles in aqueous solution, while the addition of alpha-CD causes degradation of the micelles and the formation of rotaxanes.  相似文献   

6.
Two ferrocenylmethyl ammonium salts were used as axle components of pseudorotaxanes with dibenzo[24]crown‐8. The pseudorotaxane with an alkyne terminal group in the axle component underwent a Cu‐catalyzed Huisgen coupling reaction (click reaction) with an alkyl azide to afford cationic [2]rotaxanes with a triazole group in the axle molecule. The rotaxane reacted with Ac2O to produce neutral rotaxanes with an amide group in the axle component. Both cationic and neutral rotaxanes were treated with K[PtCl3(CH2?CH2)] to form the PtII‐containing rotaxanes.  相似文献   

7.
Kinetically stable metallocycle-based molecular shuttles of [2]rotaxanes 4a and 4b, along with [3]rotaxanes 5a and 5b, have been prepared using the rhenium(I)-bridged metallocycle 2 and the dumbbell components containing two stations, 3a and 3b. The rotaxanes were self-assembled by hydrogen bonding interactions upon heating a Cl(2)CHCHCl(2) solution containing their components at 70 degrees C. Each rotaxane was isolated in pure form by silica gel chromatography under ordinary laboratory conditions and fully characterized by elemental analysis and various spectroscopic methods. The (1)H NMR signals for the amide NH and the methylene -(CH(2))(4)- of the station were considerably changed when occupied by the metallocycle. In [2]rotaxane 4b, which has a larger naphthyl spacer, the occupied and unoccupied stations gave widely separated signals in the (1)H NMR spectroscopy at room temperature, but averaged signals of two stations were observed in [2]rotaxane 4a, which has a smaller phenyl spacer. This is attributed to the shuttling of the metallocycle between two stations. The coalescence temperature experiment gave a shuttling rate of approximately 670 s(-)(1) at 19 degrees C in CDCl(3), corresponding to an activation free energy (DeltaG()) of 13.3 kcal/mol. With respect to the relative position of the chloride in the rhenium(I) center, two diastereomers are possible in the [2]rotaxane and three diastereomers are possible in the [3]rotaxane. In fact, the rotaxanes exist as diastereomeric mixtures in nearly equal amounts of all possible diastereomers on the basis of the amide NH signals of the station in the (1)H NMR spectroscopy.  相似文献   

8.
Surface sensitive X-ray techniques have been used to elucidate the structures of amphiphilic [2]rotaxane and dumbbell monolayers at the air/water interface. The [2]rotaxanes were found to adopt highly hydrated tilted and/or folded conformations on the water surface largely due to the hydrophilic nature of their tetracationic ring component. This conformation was less pronounced in monolayers of the dumbbell precursors. Increasing the surface pressure resulted in an expansion of [2]rotaxane monolayers in the vertical direction and decreased hydration.  相似文献   

9.
Macromolecular [2]rotaxanes comprising a polymer axle and crown ether wheel were synthesized to evaluate the effect of component mobility on the properties of the axle polymer, especially its crystallinity. Living ring‐opening polymerization of δvalerolactone with a pseudorotaxane initiator with a hydroxy group at the axle terminus was followed by end‐capping with a bulky isocyanate. This yielded macromolecular [2]rotaxanes (M2Rs) possessing polyester axles of varying molecular weights. The crystallinity of the axle polymers of two series of M2Rs, with either fixed and movable components, was evaluated by differential scanning calorimetry. The results revealed that the effect of component mobility was significant in the fixed and movable M2Rs with a certain axle length, thus suggesting that the properties of the axle polymer depend on the mobility of the polyrotaxane components.  相似文献   

10.
The threading of an alpha-cyclodextrin (alpha-CyD) by an unsymmetrical dumbbell generally results in two isomeric [2]rotaxanes differing in the orientation of the alpha-CyD. In this work, two methods have been developed for the unidirectionally threading an alpha-CyD to obtain isomer-free [2]rotaxanes. These methods use the Suzuki coupling of a boronic acid derivative and a halide in aqueous alkaline solution. The conformations of the two unidirectional [2]rotaxanes-R3 and R4 were determined by 2D 1H ROESY NMR spectra. The optical spectral studies revealed that each of the two [2]rotaxanes can proceed with E/Z photoisomerization and shuttling motions of the alpha-CyD ring on the thread under alternating irradiation at 330 and 275 nm, accompanied by fluorescence intensity changes at 530 nm. The induced circular dichroism (ICD) spectra of another two analogous [2]rotaxanes R1 and R2 were also studied. Distinctive ICD signal changes resulting from the photoisomerization with respect to the movements of alpha-CyD were detected. This demonstrates that, besides the fluorescence, ICD signal is another way to identify the shuttling motions of alpha-CyD in these [2]rotaxanes.  相似文献   

11.
Specific and reversible binding of guest molecules from a solution to a surface pre-treated with host molecules is a recent and active field of research. Self-assembled monolayers may result from supramolecular interactions, adding distinct functionalities to the surface. In this frame, the first compared study is given here of the anchoring on the technologically relevant Cu surface of calix[4]arene receptors and calix[6]arene-based rotaxanes and pseudorotaxanes. These molecules, which belong to the most representative classes of compounds in supramolecular chemistry, have been chosen for their synthetic accessibility and versatility, which make them useful building blocks for the synthesis of new advanced supramolecular structures. Covalent functionalisation of calix[4,6]arenes on Cu was reached via a dip-coating procedure, optimizing the various synthetic aspects in order to obtain good coverages and copper passivation. Molecular adhesion has been demonstrated by the presence and relative quantitation of XPS signals from specific elements in the molecules. We have successfully tested the combination of different functionalities by producing a mixed film, prepared by ligand exchange of calix[4]arene with undecanethiol. The availability of the calix[4]arene cavity to reversibly host further species after anchoring on Cu has been demonstrated by a sequence of uptake and release cycles with pyridinium salts. Rotaxane and pseudorotaxane species, composed of a calix[6]arene wheel functionalized with N-phenylurea groups on the upper rim, and a viologen-containing axle, have been anchored on Cu via the SH-termination of the axle. XPS demonstrated the successful self-assembly of fully threaded rotaxanes and pseudorotaxanes from their solutions and the controlled release upon biasing of full rotaxanes and of the pseudorotaxane wheel.  相似文献   

12.
Synthesis of [60]fullerene (C60)-functionalized rotaxanes via Diels-Alder reactions with C60 is described. Diels-Alder reaction of C60 and sulfolene moiety as masked diene attached on the wheels of rotaxanes results in high yields of C60 incorporation. Rotaxanes are prepared by tin-catalyzed urethane-forming end-capping reaction with isocyanate of pseudorotaxane having the wheel carrying C60 functionality as introduced by the Diels-Alder reaction. The Diels-Alder reaction was accomplished as end-capping reaction between C60 and pseudorotaxane bearing sultine moiety as masked diene on the axle terminal. A variety of C60-containing [2]rotaxanes was prepared in moderate to good yields by these Diels-Alder protocols.  相似文献   

13.
Here we present the first synthesis of a [3]rotaxane with two dumbbell components threaded through a single gamma-cyclodextrin macrocycle. This synthesis is carried out in two steps: first one dumbbell is synthesized threaded through the macrocycle to give a [2]rotaxane, then a second dumbbell is synthesized through the remaining cavity of the [2]rotaxane. We have synthesized a hetero- [3]rotaxane with one stilbene and one cyanine dye threaded through gamma-cyclodextrin, which exhibits quantitative energy transfer between the two encapsulated dyes. The stilbene [2]rotaxane intermediate in this synthesis has a remarkably high affinity for suitably shaped hydrophobic guests in aqueous solution, facilitating the synthesis of [3]rotaxanes and suggesting possible applications in sensors.  相似文献   

14.
To investigate the possibility of incorporating the 1,2-bis(pyridinium)ethane[subset or is implied by]24C8 [2]pseudorotaxane motif into dendrimer like macromolecules, a series of branched [n]rotaxanes were prepared employing multiple dibenzo-24-membered crown ether wheels with various aromatic core structures and the 1,2-bis(4,4'-dipyridinium)ethane axle. Yields of branched [2]-, [3]- and [4]rotaxanes were dependent on the size of the core and the relative proximity of the crown ethers arranged around the core unit.  相似文献   

15.
A triethylphosphonium group attached to a pyridinium ethane moiety can be used as an axle for the self-assembly of [2]pseudorotaxanes and [2]rotaxanes. Although [2]pseudorotaxane formation is limited due to the bulk of the PR4+ group, [2]rotaxanes can be formed utilising 24-crown-8 ether, benzo-24-crown-8 ether and naphtho-24-crown-8 ether. The synthesis of these [2]rotaxanes and the X-ray structure of the [2]rotaxane containing a 24-crown-8 ether wheel are described. When the crown ether contains an aromatic group two possible conformational isomers exist; these are identified at low temperature by 1H and 31P NMR spectroscopy.  相似文献   

16.
A novel bis(m-phenylene)-26-crown-8-based cryptand has been synthesized. It has been used to prepare two 1:1 complexes with two paraquat derivatives with high association constants (6.5×105 and 4.0×105 M−1) in acetone. In the solid state the cryptand forms a 2:1 threaded structure with paraquat and an interesting supramolecular poly[2]pseudorotaxane threaded structure with a dihydroxyethyl-substituted paraquat derivative, respectively. It has been further used to prepare cryptand/paraquat derivative [2]rotaxanes efficiently by the immediate solvent evaporation method using easily available 3,5-dimethylphenyl groups as the stoppers.  相似文献   

17.
Base-catalyzed thiol-maleimide click chemistry has been applied to the synthesis of neutral donor-acceptor [2]rotaxanes in good yield. This method is extended further to the synthesis of a glutathione-functionalized [2]pseudorotaxane, a precursor to integrated conjugates of interlocked molecules with proteins and enzymes.  相似文献   

18.
A series of donor–acceptor [2]‐, [3]‐, and [4]rotaxanes and self‐complexes ([1]rotaxanes) have been synthesized by a threading‐followed‐by‐stoppering approach, in which the precursor pseudorotaxanes are fixed by using CuI‐catalyzed Huisgen 1,3‐dipolar cycloaddition to attach the required stoppers. This alternative approach to forming rotaxanes of the donor–acceptor type, in which the donor is a 1,5‐dioxynaphthalene unit and the acceptor is the tetracationic cyclophane cyclobis(paraquat‐p‐phenylene), proceeds with enhanced yields relative to the tried and tested synthetic strategies, which involve the clipping of the cyclophane around a preformed dumbbell containing π‐electron‐donating recognition sites. The new synthetic approach is amenable to application to highly convergent sequences. To extend the scope of this reaction, we constructed [2]rotaxanes in which one of the phenylene rings of the tetracationic cyclophane is perfluorinated, a feature which significantly weakens its association with π‐electron‐rich guests. The activation barrier for the shuttling of the cyclophane over a spacer containing two triazole rings was determined to be (15.5±0.1) kcal mol?1 for a degenerate two‐station [2]rotaxane, a value similar to that previously measured for analogous degenerate compounds containing aromatic or ethylene glycol spacers. The triazole rings do not seem to perturb the shuttling process significantly; this property bodes well for their future incorporation into bistable molecular switches.  相似文献   

19.
Park JW  Song HJ 《Organic letters》2004,6(26):4869-4872
[structure: see text] Capping the alpha-cyclodextrin (alpha-CD) complex of 1-(N-carbazole)-10-[4-(4-pyridinio)-1-pyridinio]decane with 3,5-dimethoxybenzyl bromide in DMF gives two isomeric [2]rotaxanes, 2a and 2b, while alpha-CD and 1-(N-carbazole)-10-[4-(1-methyl-4-pyridnino)-1-pyridinio]decane 3 in water form mostly a unidirectional [2]pseudorotaxane having the same alpha-CD orientation as 2b. Structures were elucidated from 1H NMR and circular dichroism spectra. The orientational specificity of alpha-CD in the 3/alpha-CD [2]pseudorotaxane is due to the slow dethreading rate of the 2b-type isomer.  相似文献   

20.
Two molecular shuttles/switches—a slow one and a fast one—in the shape of amphiphilic, bistable [2]rotaxanes have been synthesized and characterized. Both [2]rotaxanes contain a hydrophobic, tetraarylmethane and a hydrophilic, dendritic stopper. They are comprised of two π‐electron‐rich stations—a monopyrrolotetrathiafulvalene unit and a 1,5‐dioxynaphthalene moiety—which can act as recognition sites for the tetracationic cyclophane, cyclobis(paraquat‐p‐phenylene), to reside around. In addition, a model [2]rotaxane, incorporating only a monopyrrolotetrathiafulvalene unit in the rod section of the amphiphilic dumbbell component and cyclobis(paraquat‐p‐phenylene) as the ring component, has been investigated. The dumbbell‐shaped components were constructed using conventional synthetic methodologies to assemble 1) the hydrophobic, tetraarylmethane stopper and 2) the hydrophilic, dendritic stopper. Next, 3) the hydrophobic stopper was fused to the 1,5‐dioxynaphthalene moiety and/or the monopyrrolotetrathiafulvalene unit by appropriate alkylations, followed by 4) attachment of the hydrophilic stopper, once again by alkylation to give the dumbbell‐shaped compounds. Finally, 5) the [2]rotaxanes were self‐assembled by using the dumbbells as templates for the formation of the encircling cyclobis(paraquat‐p‐phenylene) tetracations. The two [2]rotaxanes differ in their arrangement of the π‐electron‐rich units, one in which the SMe group of the monopyrrolotetrathiafulvalene unit points toward the 1,5‐dioxynaphthalene moiety ( 2 ?4 PF6) and another in which it points away from the 1,5‐dioxynaphthalene moiety ( 3 ?4 PF6). This seemingly small difference in the orientation of the monopyrrolotetrathiafulvalene unit leads to profound changes in the physical properties of these rotaxanes. The bistable [2]rotaxanes were both isolated as brown solids. 1H NMR and UV‐visible spectroscopy, and electrochemical investigations, reveal the presence of both possible translational isomers at ambient temperature. As a consequence of the existence of both possible translational isomers in these bistable [2]rotaxanes, they exhibit a complex electrochemical behavior, which is further complicated by the presence of folded conformations wherein the monopyrrolotetrathiafulvalene unit is involved in an “alongside” interaction with the tetracationic cyclophane. In the molecular shuttle/switch 2 ?4 PF6 a “knob”, in the shape of the SMe group, is situated between the monopyrrolotetrathiafulvalene and the 1,5‐dioxynaphthalene recognition sites, making it possible to isolate both translational isomers ( 2 ?4 PF6?GREEN and 2 ?4 PF6?RED) and to investigate the kinetics of the shuttling of the cyclobis(paraquat‐p‐phenylene) tetracation between the two recognition sites. The shuttling processes, which are accompanied by clearly detectable color changes, can be followed by 1H NMR and UV‐visible spectroscopy, allowing the rate constants and energies of activation for the translation of the cyclobis(paraquat‐p‐phenylene) tetracations between the two recognition sites to be determined. In the molecular shuttle/switch 3 ?4 PF6, there is no “knob” situated between the 1,5‐dioxynaphthalene and the monopyrrolotetrathiafulvalene recognition sites, resulting in a considerably faster shuttling of the cyclobis(paraquat‐p‐phenylene) tetracation between these two sites, making the separation of the two possible translational isomers of 3 ?4 PF6 impractical. However, the shuttling of the cyclobis(paraquat‐p‐phenylene) tetracation can be followed by dynamic 1H NMR spectroscopy. At low temperatures, the major translational isomer is 3 ?4 PF6?RED, while 3 ?4 PF6?GREEN is the major isomer at higher temperature. In the bistable [2]rotaxanes shuttling of the cyclobis(paraquat‐p‐phenylene) tetracations can be driven by electrochemical oxidation of the monopyrrolotetrathiafulvalene unit. In complexes in which one of the two dumbbell stoppers is missing, electrochemical oxidation causes dethreading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号