首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Ni-B-Oδ andNi-B-Zr-Oδ catalysts were prepared by the method of chemical reduction, and the deep removal of CO by selective methanation from the reformed fuels was performed over the as-prepared catalysts. The results showed that zirconium strongly influenced the activity and selectivity of the Ni-B-Zr-Oδ catalysts. Over the Ni-B-Oδ catalyst, the highest CO conversion obtained was only 24.32% under the experimental conditions studied. However, over the Ni-B-Zr-Oδ catalysts, the CO methanation conversion was higher than 90% when the temperature was increased to 220 oC. Additionally, it was found that the Ni/B mole ratio also affected the performance of the Ni-B-Zr-Oδ catalysts. With the increase of the Ni/B mole ratio from 1.8 to 2.2, the CO methanation activity of the catalyst was improved. But when the Ni/B mole ratio was higher than 2.2, the performance of the catalyst for CO selective methanation decreased instead. Among all the catalysts, the Ni29B13Zr58Oδ catalyst investigated here exhibited the highest catalytic performance for the CO selective methanation, which was capable of reducing the CO outlet concentration to less than 40 ppm from the feed gases stream in the temperature range of 230–250 oC, while the CO2 conversion was kept below 8% all along. Characterization of the Ni-B-Oδ and Ni-B-Zr-Oδ catalysts was provided by XRD, SEM, DSC, and XPS.  相似文献   

2.
本文采用等体积浸渍制备了掺杂不同金属助剂改性的Ni基催化剂,考察了其催化浆态床CO甲烷化的性能。通过XRD、H2-TPR、HR-TEM等表征对催化剂进行了分析,结果表明,掺杂Zr、Co、Ce、Zn、La助剂促进了Ni物种在载体表面的分散,减小了Ni的晶粒尺寸,降低了催化剂的还原温度;掺杂Mg助剂则导致催化剂的还原温度升高。浆态床活性评价结果表明,掺杂Zr、Co、Ce、Zn、La助剂提高了催化剂的甲烷化性能,其中以La助剂的效果最明显,通过对La负载量进一步优化后发现,当La负载量为8%时,催化剂的甲烷化催化性能最优,CO转化率、CH4选择性和时空收率分别达到96.3%、87.1%和179.6 g·kg-1·h-1;掺杂Mg助剂则降低了催化剂的甲烷化活性。  相似文献   

3.
CO methanation on Ni/CeO2 has recently received increasing attention. However, the low-temperature activity and carbon resistance of Ni/CeO2 still need to be improved. In this study, plasma decomposition of nickel nitrate was performed at ca. 150°C and atmospheric pressure. This was followed by hydrogen reduction at 500 °C in the absence of plasma, and a highly dispersed Ni/CeO2 catalyst was obtained with improved CO adsorption and enhanced metal-support interaction. The plasma-decomposed catalyst showed significantly improved low-temperature activity with high methane selectivity (up to 100%) and enhanced carbon resistance for CO methanation. For example, at 250°C, the plasma-decomposed catalyst showed a CO conversion of 96.8% with high methane selectivity (almost 100%), whereas the CO conversion was only 14.7% for a thermally decomposed catalyst.  相似文献   

4.
In this paper, the effect of additive Fe on Ni/Al2O3 catalyst for CO2 methanation was studied. A series of bimetallic Ni–Fe catalysts with different Ni/Fe ratios were prepared by impregnation method. For comparison, monometallic Fe‐based and Ni‐based catalysts were also prepared by the same method. The characterization results showed that adding Fe to Ni catalyst on the premise of a low Ni loading(≦12 wt.%) enhanced CO2 methanation performance. However, when the Ni loading reached 12 wt.%, the catalytic activity decreased with the increase of Fe content, but still higher than the corresponding Ni‐based catalyst without Fe. Among them, the 12Ni3Fe catalyst exhibited the highest CO2 conversion of 84.3 % and nearly 100% CH4 selectivity at 50000 ml g‐1 h‐1 and 420 °C. The enhancement effect of adding Fe on CO2 methanation was attributed to the dual effect of suitable electronic environment and increased reducibility generated by Fe species.  相似文献   

5.
The screening of commercial nickel catalysts for methanation and a series of nickel catalysts supported on CeO2, γ-Al2O3, and ZrO2 in the reaction of selective CO methanation in the presence of CO2 in hydrogen-containing mixtures (1.5 vol % CO, 20 vol % CO2, 10 vol % H2O, and the balance H2) was performed at the flow rate WHSV = 26000 cm3 (g Cat)−1 h−1. It was found that commercial catalytic systems like NKM-2A and NKM-4A (NIAP-07-02) were insufficiently effective for the selective removal of CO to a level of <100 ppm. The most promising catalyst is 2 wt % Ni/CeO2. This catalyst decreased the concentration of CO from 1.5 vol % to 100 ppm in the presence of 20 vol % CO2 in the temperature range of 280–360°C at a selectivity of >40%, and it retained its activity even after contact with air. The minimum outlet CO concentration of 10 ppm at 80% selectivity on a 2 wt % Ni/CeO2 catalyst was reached at a temperature of 300°C.  相似文献   

6.
Sulfur‐resistant methanation of syngas was studied over MoO3–ZrO2 catalysts at 400°C. The MoO3–ZrO2 solid‐solution catalysts were prepared using the solution combustion method by varying MoO3 content and temperature. The 15MoO3–ZrO2 catalyst achieved the highest methanation performance with CO conversion up to 80% at 400°C. The structure of ZrO2 and dispersed MoO3 species was characterized using X‐ray diffraction and transmission electron microscopy. The energy‐dispersive spectrum of the 15MoO3–ZrO2 catalyst showed that the solution combustion method gave well‐dispersed MoO3 particles on the surface of ZrO2. The structure of the catalysts depends on the Mo surface density. It was observed that in the 15MoO3–ZrO2 catalyst the Mo surface density of 4.2 Mo atoms nm?2 approaches the theoretical monolayer capacity of 5 Mo atoms nm?2. The addition of a small amount of MoO3 to ZrO2 led to higher tetragonal content of ZrO2 along with a reduction of particle size. This leads to an efficient catalyst for the low‐temperature CO methanation process.  相似文献   

7.
Carbon dioxide emission to the atmosphere is worsened as all the industries emit greenhouse gases (GHGs) to the atmosphere, particularly from refinery industries. The catalytic chemical conversion through methanation reaction is the most promising technology to convert this harmful CO2 gas to wealth CH4 gas for the combustion. Thus, supported neodymium oxide based catalyst doped with manganese and ruthenium was prepared via wet impregnation route. The screening was initiated with a series of Nd/Al2O3 catalysts calcined at 400?°C followed by optimization with respect to calcination temperatures, based ratios loading and various Ru loading. The Ru/Mn/Nd (5:20:75)/Al2O3 calcined at 1000?°C was the potential catalyst, attaining a complete CO2 conversion and forming 40% of CH4 at 400?°C reaction temperature. XRD results revealed an amorphous phase with the occurrence of active species of RuO2, MnO2, and Nd2O3, and the mass ratio of Mn was the highest among other active species as confirmed by EDX. The ESR resulted in the paramagnetic of Nd3+ at the g value of 2.348. Meanwhile nitrogen adsorption (NA) analysis showed the Type IV isotherm which exhibited the mesoporous structure with H3 hysteresis of slit shape pores.  相似文献   

8.
以高比表面积ZrO2为载体,采用浸渍法制备了负载型Pt催化剂,应用于常压下气相巴豆醛加氢反应,考察了Pt负载量和H2还原温度等对巴豆醛选择性加氢性能的影响.实验结果表明,Pt负载量(质量分数)为3%的3Pt/ZrO2催化剂经500℃还原后,具有较高的巴豆醛选择性加氢性能:巴豆醛转化率为27%,巴豆醇的选择性为55%.X射线粉末衍射(XRD)分析,CO化学吸附,NH3程序升温脱附(NH3-TPD)表征结果表明Pt/ZrO2催化剂上Lewis强酸中心和适宜的Pt颗粒(约为8nm)有利于巴豆醛选择性加氢生成巴豆醇.  相似文献   

9.
Highly selective CO methanation over amorphous Ni-Ru-B/ZrO_2 catalyst   总被引:2,自引:0,他引:2  
Amorphous Ni-Ru-B/ZrO_2 catalyst was prepared by the means of chemical reduction,and selective CO methanation as a strategy for CO removal in fuel processing applications was investigated over the amorphous Ni-Ru-B/ZrO_2 catalyst.The result showed that,at the temperature of 210-230℃,the catalyst was shown to be capable of reducing CO in a hydrogen-rich reformate to less than 10 ppm,while keeping the CO_2 conversion below 1.55%and the hydrogen consumption below 6.50%.  相似文献   

10.
Series of carbon nanotube supported Ru-based catalysts were prepared by impregnation method and applied successfully for complete removal of CO by CO selective methanation from H2-rich gas stream conducted in a fixed-bed quartz tubular reactor at ambient pressure.It was found that the metal promoter,reduction temperature and metal loading affected the catalytic properties significantly.The most excellent performance was presented by 30 wt% Ru-Zr/CNTs catalyst reduced at 350℃.Since it decreased CO concentration to below 10ppm from 12000ppm by CO selective methanation at the temperature range of 180-240℃,and kept CO selectivity higher than 85% at the temperature below 200℃.Characterization using XRD,TEM,H2-TPR and XPS suggests that Zr modification of Ru/CNTs results in the weakening of the interaction between Ru and CNTs,a higher Ru dispersion and the oxidization of surface Ru.Amorphous and high dispersed Ru particles with small size were obtained for 30 wt% Ru-Zr/CNTs catalyst reduced at 350℃,leading to excellent catalytic performance in CO selective methanation.  相似文献   

11.
Ni/ZrO2 catalysts were prepared by the incipient-wetness impregnation method and were investigated in activity and selectivity for the selective catalytic methanation of CO in hydrogen-rich gases with more than 20 vol% CO2. The result showed that Ni loadings significantly influenced the performance of Ni/ZrO2 catalyst. The 1.6 wt% Ni loading catalyst exhibited the highest catalytic activity among all the catalysts in the selective methanation of CO in hydrogen-rich gas. The outlet concentration of CO was less than 20 ppm with the hydrogen consumption below 7%, at a gas-hourly-space velocity as high as 10000 h-1 and a temperature range of 260 °C to 280 °C. The X-ray diffraction (XRD) and temperature programmed reduction (TPR) measurements showed that NiO was dispersed thoroughly on the surface of ZrO2 support if Ni loading was under 1.6 wt%. When Ni loading was increased to 3 wt% or above, the free bulk NiO species began to assemble, which was not favorable to increase the selectivity of the catalyst.  相似文献   

12.
Catalytic hydrogenation of carbon dioxide to methane can not only achieve the recycling of carbon resources, but also effectively meet the increasing demand for natural gas. In this paper, Ni-based catalysts on different supports including ZrO2, CeO2 and Al2O3 were synthesized using citric acid complexation method and their CO2 methanation performances were tested. Among these catalysts, the Ni/ZrO2 catalyst achieved the best CO2 methanation activity. The catalysts were characterized by N2-physisorption, XRD, H2-TPR and H2-TPD. The results indicate that the superiority of the Ni/ZrO2 catalyst can be mainly ascribed to its not only high Ni dispersion but also high reduction degree. Since the reduction degree of Ni/Al2O3 is low, it exhibits poor activity. The preparation condition for the Ni/ZrO2 catalyst was further optimized. The result shows that at molar ratio of citric acid to Ni ions of 3, the catalyst exhibits the best activity owing to the highest Ni dispersion, the largest Ni surface area, an appropriate metal-support interaction and the most moderate basic sites.  相似文献   

13.
CO2 is the main component of greenhouse gases and also an important carbon source. The hydrogenation of CO2 to methane using Ni-based catalysts can not only alleviate CO2 emissions but also obtain useful fuels. However, Ni-based catalysts face one major problem of the sintering of Ni nanoparticles in the process of CO2 methanation. Thus, this work has synthesized a series of efficient and robust nickel silicate catalysts (NiPS−X) with different nickel content derived from nickel phyllosilicate by the hydrothermal method. It was found that the Ni loading plays a critical role in the structure and catalytic performance of the NiPS−X catalysts. The catalytic performance gradually increases with the increase of Ni loading. In particular, the highly dispersed NiPS-1.6 catalyst with a high Ni loading of 34.3 wt% could obtain the CO2 conversion greater than 80%, and the methane selectivity was close to 100% for 48 h at 330 °C and the GHSV of 40,000 mL g−1 h−1. The excellent catalytic property can be assigned to the high dispersion of Ni nanoparticles and the strong interaction between the active component and the carrier, which is derived from a unique layered silicate structure with lots of nickel phyllosilicate and a large number of Lewis acid sites.  相似文献   

14.
The dispersion of nickel catalysts is crucial for the catalytic ability of CO2 methanation, which can be influenced by the fabrication method and the operation process of the catalysts. Therefore, a series of fabrication methods, including ultrasonic, hydrothermal, microwave, and co-precipitation, have been applied to prepare 25Ni-5Er-Al2O3 catalysts. The fabrication method can partially influence the structural and catalytic activity of the nickel aluminate catalysts. Among the catalysts modified by Erbium prepared with various methods, the catalyst fabricated by ultrasonic pathway exhibited better catalytic performance and CH4 selectivity especially, at a temperature (400 ℃). The impact of the temperature of the reaction (200–500 °C) was examined under a stoichiometric precursor ratio of (H2:CO2) = 4: 1, atmospheric pressure, and space velocity (GHSV) of 25000 mL/gcath. The results demonstrate that the ultrasonic method is strongly efficient for fabricating Ni-based catalysts with a high BET surface area of about 190.33 m2g?1. The catalyst composed via the ultrasonic technique has 69.38 % carbon dioxide conversion and 100 % methane selectivity at 400 °C for excellent catalytic performance in CO2 methanation reactions. The fabrication effect can be associated with its high surface area, which is achieved via the hot spot mechanism. Besides, the addition of Erbium promotes the Ni dispersion on the supports and stimulates the positive reaction because of the erbium oxygen vacancies.  相似文献   

15.
Catalytic hydrodeoxygenation (HDO) of anisole, a methoxy-rich lignin-derived bio-oil model compound, was carried out over a series of Ni-containing (5, 10, 20, and 30 wt%) catalysts with commercial silica and ordered mesoporous silica SBA-15 as support. Both supports and catalysts were characterized by N2 adsorption–desorption isotherms, X-ray diffraction, CO chemisorption, and transmission electron microscopy (TEM). Catalytic reaction was performed at 250 °C and 10 bar H2 pressure. Depending on the catalyst support used and the content of active metal, the catalytic activity and product distribution changed drastically. Increase of the nickel loading resulted in increased anisole conversion and C6 hydrocarbon (benzene and cyclohexane) yield. However, loading more Ni than 20 wt% resulted in a decrease of both conversion and C6 yield due to agglomeration of Ni particles. In addition, Ni/SBA-15 samples exhibited much stronger catalytic activity and selectivity toward C6 hydrocarbon products compared with Ni/silica catalysts. The differences in catalytic activity among these catalysts can be attributed to the effect of the pore size and pore structure of mesoporous SBA-15. SBA-15 can accommodate more Ni species inside channels than conventional silica due to its high pore volume with uniform pore structure, leading to high HDO catalytic activity.  相似文献   

16.
The correlation between phase structures and surface acidity of Al2O3 supports calcined at different temperatures and the catalytic performance of Ni/Al2O3 catalysts in the production of synthetic natural gas (SNG) via CO methanation was systematically investigated. A series of 10 wt% NiO/Al2O3 catalysts were prepared by the conventional impregnation method, and the phase structures and surface acidity of Al2O3 supports were adjusted by calcining the commercial γ-Al2O3 at different temperatures (600–1200 °C). CO methanation reaction was carried out in the temperature range of 300–600 °C at different weight hourly space velocities (WHSV = 30000 and 120000 mL·g?1·h?1) and pressures (0.1 and 3.0 MPa). It was found that high calcination temperature not only led to the growth in Ni particle size, but also weakened the interaction between Ni nanoparticles and Al2O3 supports due to the rapid decrease of the specific surface area and acidity of Al2O3 supports. Interestingly, Ni catalysts supported on Al2O3 calcined at 1200 °C (Ni/Al2O3-1200) exhibited the best catalytic activity for CO methanation under different reaction conditions. Lifetime reaction tests also indicated that Ni/Al2O3-1200 was the most active and stable catalyst compared with the other three catalysts, whose supports were calcined at lower temperatures (600, 800 and 1000 °C). These findings would therefore be helpful to develop Ni/Al2O3 methanation catalyst for SNG production.  相似文献   

17.
The characterization and catalytic activity of a Ni/CeO2/ZrO2 catalyst for methane steam reforming at 600°C were investigated. The addition of ceria increased the surface area and basicity of the catalysts. The redox reaction capability of the ceria increased the hydrogen yield and carbon monoxide selectivity, and inhibited carbon formation.  相似文献   

18.
采用化学还原法制备了苯选择加氢制环己烯催化剂Ru-B/ZrO2,考察了Cr,Mn,Fe,Co,Ni,Cu和Zn等过渡金属的添加对Ru-B/ZrO2催化剂性能的影响.结果表明,这些过渡金属的添加均可提高Ru-B/ZrO2催化剂中的B含量.B的修饰及第二种金属或金属氧化物的集团效应和配位效应导致Ru-B/ZrO2催化剂活性降低和环己烯选择性升高.当Co/Ru原子比为0.06时,Ru-Co-B/ZrO2催化剂上反应25min苯转化率为75.8%时,环己烯选择性和收率分别为82.8%和62.8%.在双釜串联连续反应器中和优化反应条件下,Ru-Co-B/ZrO2催化剂使用419h内苯转化率稳定在40%左右,环己烯选择性和收率分别稳定在73%和30%左右.  相似文献   

19.
Cobalt-manganese nano catalysts were prepared by sol-gel method. This research investigated the effects of different cobalt-manganese (Co/Mn = 1/1) loading, pH and calcination conditions on the catalytic performance of Co-Mn/TiO2 catalysts for Fischer-Tropsch synthesis (FTS) in a fixed bed reactor. It was found that the catalyst containing 30wt%(Co-Mn)/TiO2 was an optimal catalyst for the conversion of synthesis gas to light olefins especially propylene. The activity and selectivity of optimal catalyst were studied under different operational conditions. The results showed that the best operational conditions were H2/CO= 1/1 molar feed ratio at 250 °C and GHSV= 1300 h?1 under atmospheric pressure. Characterization of catalysts was carried out by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption-desorption measurements.  相似文献   

20.
采用等体积浸渍法和共沉淀法制备了Ni催化剂,在固定床反应器上考察了Ni负载量、焙烧温度、反应温度等因素对乙二醇低温重整制氢反应活性和选择性的影响。应用X射线衍射、氮物理吸附、H2程序升温还原等技术对负载型Ni催化剂进行了表征。结果表明,共沉淀法制备的Ni/CeO2催化剂具有较小的NiO颗粒与CeO2载体颗粒粒径,催化活性较高。添加少量氧化钴到Ni/CeO2催化剂中可使H2收率达72.6%,EG转化率达93.1%。在CeO2中添加Al2O3能提高负载Ni催化剂的活性,乙二醇转化率达94.0%,H2收率达67.0%;但添加SiO2则使其活性明显变差。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号