首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
发展了一种增量形式的深度能量法求解薄板几何非线性弯曲问题。根据最小势能原理和Von-Karman非线性理论,构建以薄板势能为驱动的增量式深度神经网络模型。首先用网格离散薄板求解域,通过Python读取网格数据计算Hammer积分点,并以此作为训练集代入网络模型预测板的弯曲位移,再将荷载分成一系列的荷载增量,每个增量步中计算薄板势能作为神经网络的损失函数,以最小化势能为目标,结合Adam优化算法更新网络模型参数,待势能取驻值后再继续下一个荷载步的计算。本文求解了不同形状、不同边界条件下薄板的几何非线性弯曲问题,并将计算结果与文献解或有限元Abaqus解进行对比,研究表明,本文方法在求解薄板的几何非线性弯曲问题上具备有效性和准确性,且增量式的神经网络模型能够减小计算内存,有效提高计算效率和模型的稳定性。  相似文献   

2.
建立基于物理信息的神经网络框架,利用深度学习求解矩形薄板力学正反问题.力学正问题为已知矩形薄板的基本参数、边界条件和受力情况,求薄板各点挠度;反问题为已知薄板部分点的挠度、基本参数和受力情况等,识别边界条件.基于物理信息的神经网络模型中,损失函数除基于数据驱动模型的挠度数据拟合部分以外,还引入薄板弯曲基本方程和应力应变...  相似文献   

3.
高冀峰  王勇  常磊 《应用力学学报》2015,(2):221-225,351
力密度法最初是求解膜结构找形问题的方法,经发展可用于计算桁架结构的几何非线性问题。本文应用力密度法建立结构变形后的非线性平衡方程及相应的雅可比矩阵,用于迭代求解;从能量原理出发,推导出杆单元应变能、外荷载势能、结构总势能在每次迭代位移方向上关于步长λ的显式列式。相对于固定步长的牛顿法,本文将最优迭代步长λ引入求解,使结构在每次迭代位移方向上均达到总势能最小。经桁架算例验证,表明该方法可加快计算收敛进程。  相似文献   

4.
通过损伤弹性薄板的变分方法,推导了损伤弹性薄板弯曲的运动控制方程.选取满足边界条件的挠度函数,采用Ritz法和 Galerkin法,将原问题转化为线性方程组的求解.通过算例分析,得到y=b/2处挠度和损伤随x的变化曲线,结果表明损伤薄板中任一点的位移总是大于无损薄板中的位移.  相似文献   

5.
周志红 《江苏力学》1996,(11):90-94
本文以双重三角级数为试函数,用配点法建立残值方程,并用阻尼最小二乘法求解,研究了分析周边简支可动梯形薄板的几何非线性弯曲问题,并给出两个算例,由计算结果显示,效果良好且工作量较少,本文的计算结果可直接用于工程。  相似文献   

6.
黄钟民  谢臻  张易申  彭林欣 《力学学报》2021,53(9):2541-2553
发展了一种求解面内变刚度功能梯度薄板弯曲问题的神经网络方法. 面内变刚度薄板弯曲问题的偏微分控制方程为一复杂的4阶偏微分方程, 传统的基于强形式的神经网络解法在求解该偏微分方程时可能会遇到难以收敛、边界条件难以处理的情况. 本文基于Kirchhoff薄板弯曲理论, 提出了一种直角坐标系下任意面内变刚度薄板弯曲问题的神经网络解法. 神经网络模型包含挠度网络与弯矩网络, 分别用于预测薄板的挠度与弯矩, 从而将求解4阶偏微分方程转换为求解一系列二阶偏微分方程组, 通过对挠度、弯矩试函数的构造可使得神经网络计算结果严格满足边界条件. 在误差的反向传播中, 根据本文提出的误差函数公式计算训练误差并结合Adam优化算法更新模型的内部参数. 求解了不同边界条件、形状的面内变刚度薄板弯曲问题, 并将所得计算结果与理论解、有限元解进行对比. 研究表明, 本文模型对于求解面内变刚度薄板弯曲问题具备适应性, 虽然模型中的弯矩网络收敛较挠度网络要慢, 但本文方法在试函数的构造上更为简单、适应性更强.   相似文献   

7.
本文采用常微分方程两点边值问题的打靶法,建立了圆薄板轴对称大挠度弯曲vonKármán位移型方程的自动求解过程.作为例子,分析了圆薄板在均布横向截荷作用下的非线性弯曲问题,给出了载荷参数大范围变化的解曲线  相似文献   

8.
本文采用常微分方程两点边值问题的打靶法,建立了圆薄板轴对称大挠度弯曲vonKármán位移型方程的自动求解过程.作为例子,分析了圆薄板在均布横向截荷作用下的非线性弯曲问题,给出了载荷参数大范围变化的解曲线  相似文献   

9.
基于一种板的修正变分泛函,将杂交边界点法与双互易法结合,用于薄板弯曲问题的分析。该方法将问题的解分为齐次方程的通解和非齐次的特解两部分,特解采用径向基函数插值得到,而通解则使用杂交边界点法求解。在杂交边界点法用于求解通解的列式过程中,边界变量采用移动最小二乘近似,域内变量则采用基本解插值。与有限元法相比,该方法仅需要边界上离散点的信息,无论插值还是积分都不需要网格,域内点仅用来插值非齐次项,因而仍是一种纯边界类型的无网格方法。数值算例表明,本文方法能以很少的计算自由度获得与其它方法同样的计算精度,且具有前后处理简单、收敛速度快等优点,适合于求解工程中各种薄板的弯曲问题。  相似文献   

10.
 从用能量法计算压杆临界荷载和质量杆自振频率的公式出发,根据两种力学问题 的基本方程,推导出相应的弹性总势能泛函,并由此说明了选取的位移函数若同时满足位移 边界条件和力的边界条件,则其计算精度将显著提高的原因.  相似文献   

11.
为发展神经网络方法在求解薄板弯曲问题中的应用,基于Kirchhoff板理论,提出一种采用全连接层求解薄板弯曲四阶偏微分控制方程的神经网络方法.首先在求解域、边界中随机生成数据点作为神经网络输入层的参数,由前向传播系统求出预测解;其次计算预测解在域内及边界处的误差,利用反向传播系统优化神经网络系统的计算参数;最后,不断训...  相似文献   

12.
在传统拓扑优化设计中,随着结构单元增加,迭代计算过程消耗了大量的时间.本文提出了一种基于深度学习的方法来加速拓扑优化设计过程,缩短了结构拓扑优化设计的迭代过程,并生成了高分辨率拓扑优化结构.利用深度学习方法,在低分辨率中间构型与高分辨率拓扑构型之间创建高维映射关系,利用独立、连续和映射(ICM)方法建立深度学习网络所需...  相似文献   

13.
《力学快报》2020,10(3):207-212
Physics-informed deep learning has drawn tremendous interest in recent years to solve computational physics problems, whose basic concept is to embed physical laws to constrain/inform neural networks, with the need of less data for training a reliable model. This can be achieved by incorporating the residual of physics equations into the loss function. Through minimizing the loss function, the network could approximate the solution. In this paper, we propose a mixed-variable scheme of physics-informed neural network(PINN) for fluid dynamics and apply it to simulate steady and transient laminar flows at low Reynolds numbers. A parametric study indicates that the mixed-variable scheme can improve the PINN trainability and the solution accuracy. The predicted velocity and pressure fields by the proposed PINN approach are also compared with the reference numerical solutions. Simulation results demonstrate great potential of the proposed PINN for fluid flow simulation with a high accuracy.  相似文献   

14.
In this work, a physics-informed neural network(PINN) designed specifically for analyzing digital materials is introduced. This proposed machine learning(ML) model can be trained free of ground truth data by adopting the minimum energy criteria as its loss function. Results show that our energy-based PINN reaches similar accuracy as supervised ML models. Adding a hinge loss on the Jacobian can constrain the model to avoid erroneous deformation gradient caused by the nonlinear logarithmic strain. Lastly, we discuss how the strain energy of each material element at each numerical integration point can be calculated parallelly on a GPU. The algorithm is tested on different mesh densities to evaluate its computational efficiency which scales linearly with respect to the number of nodes in the system. This work provides a foundation for encoding physical behaviors of digital materials directly into neural networks, enabling label-free learning for the design of next-generation composites.  相似文献   

15.
Bai  Yuexing  Chaolu  Temuer  Bilige  Sudao 《Nonlinear dynamics》2021,105(4):3439-3450

Although many effective methods for solving partial differential equations (PDEs) have been proposed, there is no universal method that can solve all PDEs. Therefore, solving partial differential equations has always been a difficult problem in mathematics, such as deep neural network (DNN). In recent years, a method of embedding some basic physical laws into traditional neural networks has been proposed to reveal the dynamic behavior of equations directly from space-time data [i.e., physics-informed neural network (PINN)]. Based on the above, an improved deep learning method to recover the new soliton solution of Huxley equation has been proposed in this paper. As far as we know, this is the first time that we have used an improved method to study the numerical solution of the Huxley equation. In order to illustrate the advantages of the improved method, we use the same network depth, the same hidden layer and neurons contained in the hidden layer, and the same training sample points. We analyze the dynamic behavior and error of Huxley’s exact solution and the new soliton solution and give vivid graphs and detailed analysis. Numerical results show that the improved algorithm can use fewer sample points to reconstruct the exact solution of the Huxley equation with faster convergence speed and better simulation effect.

  相似文献   

16.
采用径向基函数配点法分析考虑剪切效应的梁板弯曲问题,该方法利用径向基函数作为近似函数,基于配点法离散方程,通过最小二乘法求解。径向基函数配点法在离散和计算过程中不需要任何形式的网格划分,是一种真正的无网格法;径向基函数可以用一元函数来描述多元函数,存在明显的储存和运算简单的特点;而基于配点法求解不需要积分,提高了计算效率。分析考虑剪切效应的薄梁板问题时,传统的有限元法或无网格法求解均会存在剪切锁闭问题,而径向基函数在全域内存在无限连续性,能够准确地满足Kirchhoff约束条件,因此径向基函数配点法能够消除剪切锁闭现象,而且不会出现应力波动。该方法的优势在于,其不仅易于离散、精度高,而且具有指数收敛率,计算效率高。数值算例验证了上述结论和该方法的稳定性。  相似文献   

17.
计算机辅助设计已广泛应用于结构计算和分析,但如何利用计算机智能生成最佳的新型结构还面临巨大挑战。针对这一问题,提出了一种基于拓扑优化和深度学习的新型结构智能生成方法。该方法首先通过结构拓扑优化分析获得不同参数下的优化结果制作训练集图片,并将训练集标签定义为相应的工况类型,然后应用最小二乘生成对抗网络(LSGAN)深度学习算法进行训练并生成大量的新型结构,最后建立评价指标和评估体系对生成的模型进行评价比较,根据需求选择最佳结构设计方案。结合一个铸钢支座节点底板设计的工程案例,详细阐述了上述方法的应用过程,并借助三维重构技术和增材制造技术实现结构模型的一体化制造。研究结果表明,基于拓扑优化和深度学习的新型结构智能生成方法不仅可以自动生成新的结构,而且可以进一步优化结构的材料用量和力学性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号