首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
以天然生物质去皮的蓖麻为碳源,采用一步水热法合成了荧光性能优良的绿色荧光蓖麻碳量子点(CO-CQDs),对其形貌和发光性能进行了表征。通过将该CO-CQDs与荧光极强的卤代荧光素染料曙红Y(EY)复合,二者可形成荧光发射峰相距较远的新型CO-CQDs/EY复合物。在pH=4.00的Na2HPO4-柠檬酸缓冲溶液中,在320 nm的激发波长下,CO-CQDs/EY复合物于405 nm和540 nm处显示出两个独立的荧光发射峰。在该体系中加入Cr(Ⅵ),405 nm和540 nm两处的荧光信号均显著猝灭。L-抗坏血酸(L-ascorbic acid,AA)的加入可使复合物于540 nm的荧光信号恢复,而405 nm处的荧光强度基本不变。据此建立了一种以CO-CQDs/EY复合物为比率型荧光探针测定AA的新方法。实验测定了荧光信号恢复的最佳条件和影响荧光恢复的因素,初步探讨了反应机理。在优化的实验条件下,该探针于540 nm/405 nm两处的荧光强度比值与AA的浓度在5.0×10^-8~4.0×10^-6 mol/L范围内呈良好线性关系,检出限为3.7×10^-8 mol/L。该探针用于检测药物、水果和蔬菜中AA的含量,结果满意。  相似文献   

2.
水环境中Hg(Ⅱ)的污染对生态环境和人类健康危害极大,目前Hg(Ⅱ)的检测主要有原子光谱/质谱和电化学等方法,但存在检测仪器昂贵、操作繁琐及前处理复杂等缺点,难以在日常水环境中微量Hg(Ⅱ)现场检测的应用。因此,建立一种灵敏、准确、快捷和经济的水中Hg(Ⅱ)检测方法具有重要意义。试纸法是将普通的化学反应从玻璃仪器转移到试纸上进行的一种快速检测方法,利用试剂与目标物之间产生的化学反应,通过颜色的变化可对目标物进行定性或半定量检测,具有操作简便、快速等优点。碳量子点是一类粒径小于10 nm的碳基纳米材料,具有优异的荧光性能、较低的毒性和较高的化学稳定性。利用Hg(Ⅱ)对碳量子点的荧光具有灵敏和高效的猝灭作用,构建了一种双色比率荧光试纸片用于快速检测水中微量Hg(Ⅱ)的含量。其中,采用氮掺杂水溶性碳量子点(NCDs)作为荧光响应信号、罗丹明B(RhB)作为荧光内标信号,在单一波长(355 nm)激发下产生位于440和580 nm的双色荧光发射峰。当体系加入不同浓度Hg(Ⅱ)后,NCDs表面官能团与Hg(Ⅱ)之间的静电作用和金属配位协同作用使荧光发生猝灭,而RhB的荧光信号保持不变,利用440和580 nm双色荧光信号或其强度的比值(F440/F580),可实现对微量Hg(Ⅱ)的快速检测。实验对检测条件进行了优化,结果表明在HAc-NaAc缓冲液浓度为1 mmol·L-1、pH为7的条件下,F440/F580值与Hg(Ⅱ)浓度(0~3 μmol·L-1)呈现良好的线性关系,线性方程为F440/F580=-0.785 2Hg(Ⅱ)+3.103 8,相关系数r>0.99,以3倍标准偏差计算的检出限为2.7 nmol·L-1(n=9)。对湖水与自来水中Hg(Ⅱ)进行加标回收实验,其加标回收率在91.9%~117.9%之间,说明该方法灵敏、准确,能用于水中Hg(Ⅱ)的检测。同时,将NCDs和RhB浸渍于尼龙片上构建了双色比率荧光检测试纸片,在紫外灯(365nm)照射下可观测到试纸发射淡蓝紫色荧光。而随着Hg(Ⅱ)浓度的增加,荧光颜色从淡蓝紫色到橙色发生变化,每次检测时间只需3分钟,裸眼可检出Hg(Ⅱ)浓度低至10 nmol·L-1,实现了对水中微量Hg(Ⅱ)的灵敏、快速检测。此外,该方法对Hg(Ⅱ)的检测表现出良好的特异性。因此,基于碳量子点和罗丹明B构建的双色比率荧光试纸片具有携带方便、操作简单,以及灵敏和快速等优点,为水中微量Hg(Ⅱ)的快速检测提供了新的方法和思路。  相似文献   

3.
利用水热法合成了一种新的配合物,[Eu(PABA)3(phen)(H2O)]·2H2O(1)(PABA= 对氨基苯甲酸根,phen=1,10-邻菲罗啉)。该配合物为单核分子,中心离子Eu3+的配位数9,环境为{EuO7N2},形成了一种扭曲的单帽四方反棱柱多面体。该配合物通过氢键进一步构筑成为三维超分子结构。配合物1在紫外灯下显现为亮红色,其荧光光谱在595和618 nm处出现了2条尖锐的发射峰,分别对应于Eu3+的5D0→7F1和5D0→7F2跃迁。研究了水溶液中不同阴离子、阳离子以及溶剂对配合物1荧光的影响,实验结果表明不同阴离子、阳离子和溶剂对该配合物的荧光强度有不同程度的影响,在各自实验条件下,F-,Pb2+和硝基苯对该配合物有显著的荧光猝灭效应。基于荧光猝灭机理,该配合物可作为F-,Pb2+和硝基苯的荧光探针。  相似文献   

4.
采用高温熔融法制备了单掺Tm3+和Tm3+/Ho3+共掺碲酸盐玻璃,测试了808 nm激光泵浦下玻璃的红外和上转换荧光光谱。Tm3+/Ho3+共掺碲酸盐玻璃上转换荧光光谱主要由695 nm红光、544 nm绿光、474 nm蓝光和740 nm红光四个发光带组成。通过分析样品的光谱性能和能量转换机制,发现很少报道的740 nm红光可能是由Tm3+:1D2 →3F2, 3能级跃迁产生的。在掺杂0.5 mol% Tm2O3的样品中添加0.3 mol% Ho2O3,695 nm红光、740 nm红光和474 nm蓝光等上转换发光强度明显增大,大约分别是单掺0.5 mol% Tm2O3样品中发光强度的3倍,2.5倍和14倍。这些情况说明存在着强烈的Ho3+→Tm3+反向能量传递。单掺Tm3+碲酸盐玻璃中1D2能级(发射740 nm红光)上的粒子集居主要来源于合作上转换(CU)过程,而3F2, 3能级(发射695 nm红光)上的粒子集居除了来源于CU过程之外,还有740 nm红光的发射和1G4能级上部分粒子的无辐射跃迁(1G4→3F2, 3)两条途径,因此样品中695 nm红光强度明显要大于740 nm红光强度。通过交叉驰豫作用CR2和CR3以及反向共振能量转移RET2,Tm3+/Ho3+共掺碲酸盐玻璃中Tm3+的1G4能级(发射474 nm蓝光)上的粒子集居数比单掺Tm3+时出现了净增加。Tm3+的1G4能级上粒子集居数的增加可能进一步强化了该能级的无辐射跃迁、740 nm红光的发射以及CU过程,并进而促使Tm3+的3F2, 3能级上的粒子集居。所以,当Tm3+/Ho3+共掺碲酸盐玻璃与单掺Tm3+碲酸盐玻璃中掺杂相同浓度的Tm3+时,前者的红光和蓝光等上转换荧光强度均比后者要大。本文还研究了Tm3+之间以及Tm3+与 Ho3+之间的交叉弛豫和能量传递等效应,并进一步探讨了Tm3+与 Ho3+之间的能量转换机制。  相似文献   

5.
采用高温熔融法制备了Dy3+或Tb3+单掺和Dy3+/Tb3+共掺硅酸盐氟氧闪烁玻璃。通过对傅里叶变换红外光谱、透射光谱、光致激发和发射光谱、X射线激发发射光谱及荧光衰减曲线的分析,研究Dy3+与Tb3+之间的能量传递关系以及Dy3+对Tb3+激活硅酸盐氟氧闪烁玻璃发光性能的影响。实验结果表明:Dy3+/Tb3+共掺硅酸盐氟氧闪烁玻璃具有较高的密度和良好的可见区透过率,玻璃的网络结构是由[SiO4]四面体和[AlO4]四面体连接构成。在紫外光激发时,Dy3+单掺玻璃的发光源于Dy3+的4F9/2→6H15/2(483 nm),6H13/2(576 nm)的跃迁发射,而Tb3+单掺玻璃的发光则源于Tb3+的5D4→7F6(489 nm),7F5(544 nm),7F4(586 nm)和7F6(623 nm)的跃迁发射。对于Dy3+/Tb3+共掺玻璃,发射光谱则主要由Tb3+的荧光发射组成。通过对不同波长紫外光激发的发射光谱分析发现,Dy3+/Tb3+共掺闪烁玻璃中存在多种形式的能量传递。在以Dy3+的特征激发452 nm为激发波长时,Tb3+单掺玻璃的发光很弱。但随着Dy3+的引入,通过4F9/2(Dy3+)→5D4(Tb3+)的能量传递,Tb3+发光得到敏化增强。Dy3+/Tb3+共掺玻璃的发光强度随着Dy2O3含量的增多而增强,Dy2O3含量为1 mol%时达到最大,更高Dy2O3含量的样品由于Dy3+的浓度猝灭,减少了向Tb3+的能量传递,发光强度减弱。当激发波长减小到350 nm时,Dy3+和Tb3+均被激发到更高的能级6P7/2(Dy3+)和5L9(Tb3+),此时除了4F9/2(Dy3+)→5D4(Tb3+)的能量传递外,还出现了5D4(Tb3+)→4F9/2(Dy3+)的能量回传。Dy3+掺杂浓度较低时,Dy3+→Tb3+能量传递作用较强,Tb3+发光得到敏化增强。随着Dy2O3含量的增多,Tb3+→Dy3+能量传递作用增强。当Dy2O3含量超过0.4 mol%时,Tb3+→Dy3+能量传递强于Dy3+→Tb3+能量传递,减少了Tb3+的辐射跃迁发光,因此Dy3+/Tb3+共掺玻璃的发光强度开始减弱。由于Gd3+向Dy3+或Tb3+均可进行有效的能量传递,因此在以Gd3+的特征激发274 nm为激发光时,Dy3+/Tb3+共掺玻璃中出现了Dy3+和Tb3+对Gd3+传递能量的竞争。随着Dy2O3含量的增多,Tb3+所获得的能量不断减少,同时伴随着Tb3+→Dy3+能量回传和Dy3+之间的无辐射交叉弛豫作用,Dy3+/Tb3+共掺玻璃的发光强度不断减弱。对Dy3+/Tb3+共掺闪烁玻璃中Tb3+的5D4→7F5荧光衰减曲线分析还发现,随着Dy2O3含量的增多,Tb3+的荧光寿命从2.24 ms缩短到1.15 ms,曲线从单指数形式变为双指数形式,进一步证明玻璃中存在5D4(Tb3+)→4F9/2(Dy3+)的能量回传。X射线激发发射光谱显示,Dy3+的引入对Tb3+激活闪烁玻璃的辐射发光具有很强的负面影响,而这种负面影响不足以通过Dy3+→Tb3+能量传递来弥补,因此Dy3+/Tb3+共掺玻璃的辐射发光强度随着Dy2O3含量的增多而不断减弱。由此可见,在Tb3+激活硅酸盐氟氧闪烁玻璃中,不宜将Dy3+作为敏化剂,用于增强Tb3+的发光。  相似文献   

6.
以Al2(SO4)3·18H2O、尿素为原料,采用水热-热解法制备了球形α-Al2O3粉体。以自制α-Al2O3、Y2O3及CeO2为原料,固相法制备了白光LED用Y2.93Al5O12∶0.07Ce3+黄色荧光粉,通过X射线衍射(XRD)、扫描电镜(SEM)、X射线能谱(EDS)及荧光光谱(PL)等对产物的物相、形貌及光致发光性能进行了表征。结果表明:水热-热解法制备出了物相纯净、分散性良好的球形α-Al2O3粉体,以该α-Al2O3为原料,合成出可被460 nm蓝光有效激发,发射光谱为峰值在550 nm宽带的Y2.93Al5O12∶0.07Ce3+荧光粉,色坐标为(0.453,0.531 9),采用GSAS软件对Y2.93Al5O12∶0.07Ce3+荧光粉的XRD图进行了Rietveld结构精修,精修图与XRD测试图完全吻合,Y,Al,Ce,O四元素均匀地分布在黄色荧光粉产物中,Y2.93Al5O12∶0.07Ce3+黄色荧光粉的激发光谱由两个部分组成,在340和460 nm处有两个非常明显的吸收峰,Ce3+的4f能级由于自旋-耦合而劈裂为两个光谱支项2F7/2和2F5/2,其中2F5/2为基谱项。340 nm的激发峰对应于2F5/2→5D5/2的跃迁,460 nm的激发峰属于2F7/2→5D3/2的跃迁,并且460 nm处的激发强度强于340 nm处激发强度。以460 nm为监测波长得到的发射光谱,最强发射峰位于550 nm,Y2.93Al5O12∶0.07Ce3+荧光粉是一种适用于白光LED的高性能黄色荧光粉。  相似文献   

7.
荧光纳米材料不但具备纳米材料的优势,同时还具有优异的光学性质,被广泛应用于荧光标记、离子识别、荧光免疫分析、光学成像和医学诊断等方面。因此,荧光纳米材料的制备、结构分析和荧光特性等方面的研究备受人们的关注。为了获得发光强度大、荧光量子效率高和制备过程可控的Si基荧光纳米材料,实验进一步研究了Si纳米线对样品发光特性的影响和样品的光学稳定性。首先,基于固-液-固生长机制,在反应温度为1 100 ℃、N2气流量为1 500 sccm、生长时间为15~60 min等工艺条件下,分别以“抛光”和“金字塔”织构表面的单晶Si(100)为衬底,生长出不同长度和分布的Si纳米线;以Au或Au-Al合金膜层作为金属催化剂,生长出密度分别约为108和1010 cm-2的Si纳米线;然后,利用L4514自动控温管式加热炉,基于高温固相法,在温度为1 100 ℃、掺杂时间为60 min和N2气流量为1 000 sccm等工艺条件下,以高纯Tb4O7(99.99%)粉末为稀土掺杂剂对不同Si纳米线衬底进行稀土掺杂,制备一系列的荧光纳米材料SiNWs:Tb3+样品;室温下利用Hitachi F-4600型荧光分光光度计,固定激发光波长为243 nm、激发光狭缝为2.5 nm、发射光狭缝为2.5 nm、扫描波长范围为450~650 nm、光电倍增管(photomultiplier lube, PMT)电压为600 V等参数下,测量了不同样品的光致发光特性;最后,实验测试了该荧光纳米材料的光学稳定性,如时间(0~30 d)、温度(300~500 K)、酸碱(pH 1和11)、抗光漂白(0~120 min)等稳定性以及水溶性和分散性。结果显示,在衬底为“金字塔”织构表面上、生长时间为30 min、以Au为金属催化剂等条件下制备的Si纳米线为Tb3+掺杂衬底时,SiNWs:Tb3+的绿光发射强度较大,其发光强峰值位于554 nm,属于能级5D47F5的跃迁,另外在波长为494,593和628 nm出现了三条发光谱带,它们分别属于能级5D4→7F6,5D4→7F4和5D4→7F3的跃迁。另外,样品展示出了优异的时间、温度、酸碱和抗光漂白等光学稳定性,同时还具有良好的水溶性和分散性。如温度升高到500 K时,光发射强度仅降低了约8.9%左右;抗光漂白能力较强,用波长为365 nm、功率为450 W的紫外光源照射120 min,样品的绿光发射强度无衰减;酸、碱稳定性好,在pH 1的强酸(HCl)溶液中120 min未见衰减,在pH 11的强碱(NaOH)溶液中15 min内衰减较小, 随后发光强度出现了缓慢下降的趋势;当60 min后,样品的发光强度变得极其微弱。分析认为,在SiNWs:Tb3+表面有一层SiO2包覆层,而NaOH溶液容易和SiO2发生化学反应,随着时间延长SiO2层被破坏,故样品发光强度降低;样品溶于水中放置30 d未见沉淀物,发光亮度均匀且分散性较好。在研究了制备温度、气体流量和掺杂时间等工艺条件之后,深入研究了Si纳米线自身变化对Tb3+绿光发射的影响。该材料展示出了良好的光学稳定性、水溶性和分散性,使其作为荧光标记物具有一定的应用价值。  相似文献   

8.
利用三维荧光光谱法和紫外光谱法,研究阴离子对城市污水二级出水DOM光谱的影响,为环境中DOM分析提供数据基础。结果表明:投加SO2-4和Cl-使二级出水DOM荧光峰强度小幅度增强或降低。投加NO-3浓度在0.005~0.1 mol·L-1时,出现代表可见光区类腐殖质的荧光峰。随投加NO-3浓度增大,荧光强度显著降低;代表类腐殖质荧光峰的激发波长和发射波长与紫外吸收峰右侧红移。NO-3投加浓度与HIX,UV254,UV253/UV203,α300α250/α365呈较强的正相关性,决定系数分别为0.993,0.994,0.987,0.998和0.995;与BIX呈负相关性,R2为0.949;对α350α355影响不大。结果表明,投加SO2-4和Cl-对二级出水DOM的荧光(除荧光强度外)和紫外特性影响较小。样品NO-3浓度不同时,用荧光参数和紫外参数衡量不同DOM来源和性质时将产生一定影响。  相似文献   

9.
有机电致发光材料具有主动发光、视角广、对比度高等显著特点。稀土有机配合物电致发光材料目前备受广大研究者的关注。以水杨醛和苯甲酸衍生物为原料,经酯化、肼化及希夫碱缩合合成了水杨醛对甲氧基苯甲酰腙(1-H2L)、水杨醛对甲基苯甲酰腙(2-H2L)、水杨醛对溴基苯甲酰腙(3-H2L) 3种配体,以Pr(NO3)3为原料,合成了水杨醛酰腙系列镨稀土配合物,经红外光谱、紫外光谱等分析手段对该类配合物的结构进行表征,配体在3 136~3 141 cm-1出现羟基ν(OH)伸缩振动峰,在配合物的红外光谱中消失,配合物在3 330~3 368 cm-1之间的吸收峰归属为结晶的H2O的ν(O-H)羟基弯曲振动吸收峰,配合物在与配体对应的3 140 cm-1均不出现羟基吸收峰,三种配体及配合物的吸收波形相似,反映出配体及配合物的结构基本一致,但配体与配合物的吸收波峰相差较大,据此可推测配体已经配位。采用荧光分光光度计测定了该类配合物的荧光光谱,并讨论了配体取代基的变化对荧光强度的影响。配体分别在352,369,365和417 nm波长监测下,于517 nm处出现发射峰。其中3-H2L的荧光强度最高。配合物均在470 nm的蓝光激发下,分别于608和617 nm出现镨的电偶极跃迁特征发射峰,归属于3P03F2跃迁。配合物均可被470 nm蓝光激发,在608~617 nm处有较好的红光发射,该类荧光粉有望应用于OLED上进行应用。  相似文献   

10.
采用F-7000荧光光谱仪分别研究了14种苯系物在不同浓度时的三维荧光光谱特征,探讨了各物质三维荧光光谱特征与其结构特性之间的关系。结果表明:苯环上取代基的结构、位置及数量均会影响苯系物的荧光特征。其中苯、甲苯、乙苯、丙苯、异丙苯、二甲苯、均三甲苯荧光峰λех/λеm=205~215 nm/280~295 nm;苯乙烯荧光峰λех/λеm=230/345 nm;苯酚的两个荧光峰λех/λеm=220/300和270/295 nm;苯胺两个荧光峰λех/λеm=235/335和280/335 nm;氯苯有一个荧光峰λех/λеm=215/290 nm;硝基苯无明显荧光信号。由于甲基、乙基等烷基与苯环直接相连的碳原子扩大了苯环刚性平面,1 mg·L-1浓度条件下,与苯相比较:甲苯和乙苯的荧光强度FI分别增强了10.62和9.45倍,λех红移5 nm;对二甲苯、三甲苯、间二甲苯、邻二甲苯的FI增强倍数分别为5.49,4.87,2.14和1.33,说明烷基类取代基中与苯环共面、非共面碳原子的数量都会影响物质的荧光特性。苯乙烯的乙烯基团扩大刚性平面的同时,不饱和双键降低了其激发所需能量,苯乙烯浓度为0.002 mg·L-1的荧光强度与10 mg·L-1的乙苯荧光强度相当,λех相对乙苯红移了20 nm。给电子基团-OH和-NH2对苯环荧光强度的影响介于烷基与不饱和键之间,其n电子与苯环π体系形成了P-π共轭结构,刚性平面扩大,荧光强度增强,荧光光谱红移;含得电子基团-NO和-Cl类物质的n→π1*跃迁属于禁戒跃迁,产生的激发态分子数较少,同时系间窜越作用强于π1*→S1,理论上荧光较弱或不发荧光,实验结果与理论一致。  相似文献   

11.
锌离子Zn^2+对胆红素BR有着显著的荧光增强效应,基于该荧光特性,利用紫外可见光吸收和稳态荧光光谱技术提出了一种BR作为荧光探针用于Zn^2+浓度检测的新方法,特别是首次采用在波长663和600nm处的稳态荧光强度比值方法系统地研究了其与锌离子浓度在0~90μmol·L^-1范围内变化的关系,与常用的单波长荧光强度探测方法比较,有效地避免了探针浓度变化及激发光强度变化等非目标因素的影响。实验研究结果发现BR荧光探针对Zn^2+的识别行为在0~20μmol·L^-1范围内,探针BR的荧光强度比值I663 nm/I600 nm与Zn^2+的浓度之间具备线性增长关系,尤其是0~10μmol·L^-1有非常好的线性关系,线性相关系数r=0.999 87,同时Zn^2+检测限为0.1μmol·L^-1。在20~90μmol·L^-1范围内,荧光强度比值I663 nm/I600 nm趋于饱和。研究发现对实时检测人体内的Zn^2+具有很好的应用前景。  相似文献   

12.
聚腺嘌呤-金纳米簇(聚A-AuNCs)制备简单,快速,且具有优良的荧光性能和光学稳定性。基于聚A单链DNA为模板合成的金纳米簇,构建了一种灵敏、简单、快速的新传感方法用于检测汞离子。以柠檬酸钠为还原剂,通过水浴加热法合成金纳米簇。用荧光光谱仪和透射电镜对金纳米簇的荧光性能和微观形貌进行了表征。结果表明:合成的金纳米簇为球形,分散性良好,平均粒径约为7 nm。金纳米簇在280 nm紫外光激发下,于471 nm处发射出强烈的蓝色荧光,且金纳米簇的光学稳定性良好。溶液在4 ℃下避光保存1个月,金纳米簇的荧光强度变化很小。当汞离子存在时,汞离子与纳米金之间的高亲和力,可以有效地猝灭金纳米簇的荧光。文中讨论了反应体系中缓冲溶液pH值和反应时间对传感器性能的影响,发现缓冲溶液pH值对该方法的影响不大。汞离子对金纳米簇的荧光猝灭反应非常迅速,1 min之内就可以完成,所以后续反应仅需简单的混合即可进行荧光的测定。在最优化实验条件下,对一系列汞离子浓度进行了检测,线性方程为:y=-335.57x+541.35,检测线性范围在0.01~1 μmol·L-1之间,相关系数为0.992 6。根据空白的三倍标准偏差原则确定检测下限为3 nmol·L-1。该方法选择性好,通过9种金属离子的加入对金纳米簇的荧光信号并无明显影响,验证了金纳米簇对汞离子检测的特异性。用该方法检测了环境水样中的汞离子,加标回收率在95.33%~103.8%之间,相对标准偏差(RSD)不大于4%,可用于实际样品中Hg2+的检测。该法仅需将溶液简单混合即可实现对汞离子的检测,具有操作简便、快速、灵敏度高和选择性好等优点。  相似文献   

13.
采用高温固相法制备了CaAl_2Si_2O_8∶Eu,Ce,Tb单基三元掺杂的荧光材料。使用X射线衍射仪(XRD)、拉曼光谱仪(Raman)和荧光分光光度计(PL)等测试手段对该荧光材料进行表征。采用XRD表征了样品的物相组成,测试结果表明稀土离子Eu~(2+)置换Ca~(2+)并没有引起CaAl_2Si_2O_8基质晶格结构的变化。拉曼光谱分析证实了样品中硅氧四面体和铝氧四面体的存在,表明了Eu~(2+)替代Ca~(2+)的数量与晶体形态畸变程度有关,Eu~(2+)进入基质晶格的数量影响着硅(铝)氧四面体的数量。PL测试结果表明样品在325nm光激发下,其发射峰主要表现为426nm(蓝光区)的强宽带发射峰和541nm(绿光区)的弱发射峰,其中426nm处的宽带发射峰可通过高斯拟合成三个位于393,419和474nm的拟合峰;对比分析荧光性能以及同等合成条件下样品荧光强度的不同,确定了该荧光材料在三掺Eu∶Ce∶Tb的摩尔比为1∶1∶1.5时所发射荧光最强。CIE色度图坐标显示三种掺杂比例下制备的荧光材料均发射蓝色荧光,光显色性好,色温低,是一种适合作为紫外-近紫外激发的LED用蓝色荧光材料。  相似文献   

14.
钟诚  吴云  李涛  周婷  赖欣  毕剑  高道江 《发光学报》2014,35(6):666-671
采用水热法制备了Sr(MoO4x(WO41-x固溶体微晶。通过X射线粉末衍射(XRD)、傅里叶变换红外光谱(FT-IR)、扫描电镜(SEM)和荧光分析(FA)表征了微晶的结构、表面形貌和发光性能。XRD和FT-IR结果表明制备的Sr(MoO4x(WO41-x微晶皆呈现典型的四方晶相白钨矿结构。SEM结果表明制备的微晶为表面光滑且粒径均匀的球形颗粒。荧光发射光谱显示,在275 nm紫外光激发下,随着x值的增加,Sr(MoO4x-(WO41-x固溶体微晶在350 nm处的发射逐渐减弱,470 nm处的发射逐渐增强。  相似文献   

15.
以牛血清白蛋白(BSA)和葡萄糖为原料,采用光谱技术从分子水平上研究不同浓度尿素(0~7 mol·L-1)对BSA糖基化反应的影响。结果表明:BSA经过尿素处理后,其糖基化产物的自由氨基含量和内源荧光强度均显著下降;同步荧光光谱表明BSA与尿素的结合点更接近于色氨酸(Trp)残基;紫外光谱分析表明经尿素处理后BSA的糖基化产物的紫外吸收值均有不同程度的增加;三维荧光光谱表明随着尿素浓度的增加,BSA的最大发射波长产生先红移再蓝移的变化趋势,说明其结构展开,促进了BSA的糖基化反应。结果表明,尿素处理会使BSA的空间结构发生不同程度的伸展,且当尿素浓度为3 mol·L-1时BSA的糖基化反应程度最大。  相似文献   

16.
鸡粪堆肥有机质转化的荧光定量化表征   总被引:5,自引:0,他引:5  
采用荧光分析技术和数学分析方法,对不同阶段鸡粪堆肥样品提取出的水溶性有机物进行了特征荧光参数定量化表征。结果显示:随着堆肥的进行,类腐殖质荧光峰与类蛋白荧光峰荧光强度的比值I330/I280、465 nm激发波长下发射光谱中470~640 nm范围内荧光积分面积A470~640及240 nm激发波长下发射光谱中后四分之一波段与前四分之一波段的荧光强度积分面积比A435~480 nm/A300~345 nm均不断增大,表明堆肥腐殖化程度加大。三维荧光光谱显示,随着堆肥的进行类蛋白峰强度不断降低,而类富里酸峰强度不断增大,至堆肥结束类蛋白荧光基本消失;紫外区与可见区类富里酸峰荧光强度的比值r(A, C)随着堆肥的进行总体呈明显下降趋势,但出现了较大波动。相关性分析显示,I330/I280,A470~640A435~480 nm/A300~345 nm两两间显著相关,而r(A, C)受其他因素影响较大,与上述3个参数未达到显著相关水平。结果表明,I330/I280,A470~640A435~480 nm/A300~345 nm均能有效表征堆肥腐殖化进程。  相似文献   

17.
碳量子点(CQDs)是一种新型的荧光碳纳米功能材料,其良好的生物相容性和优异的光学性能引起了人们的广泛关注。选用富含蛋白质、脂肪和碳水化合物的花生仁(Peanut,PN)及水为原料,无需添加任何其他试剂,在水热反应釜中于190℃反应20 h,可一步合成绿色发光CQDs。透射电镜(TEM)结果显示,所制备的花生碳量子点(PN-CQDs)的粒径大约在10 nm左右,分布较为均匀;X射线衍射谱(XRD)和傅里叶变换红外光谱(FTIR)显示PN-CQDs晶型为无定型碳,表面富含-OH、-COOH、含氮官能团等亲水性基团,具有良好的水溶性。紫外-可见光谱(UV-Vis)和荧光发射光谱(FL)表明, PN-CQDs在275 nm处有一明显的吸收峰,为CQDs紫外特征吸收峰;该PN-CQDs具有激发波长依赖性,荧光发射峰的位置随激发波长的变化而移动;当激发波长λex为326 nm时,发射波长λem为408 nm处的荧光强度最大, PN-CQDs发出蓝色的荧光。以硫酸奎宁为参照物,利用参比法测得PN-CQDs的荧光量子产率φ为5.0%。基于该PN-CQDs良好的发光特性,以其为探针,构建了"关-开"型荧光体系用于多巴胺(Dopamine,DA)的高灵敏度检测。研究表明,在pH 3.80的HAc-NaAc缓冲介质中, Ce(Ⅳ)存在下, PN-CQDs与Ce(Ⅳ)之间的电子转移反应和Ce(Ⅳ)与该PN-CQDs表面基团结合使PN-CQDs发生的聚集作用共同导致PN-CQDs在λex/λem=326 nm/408 nm处的荧光发生猝灭,荧光信号"关闭";当加入DA后, DA与结合于PN-CQDs表面的强氧化性Ce(Ⅳ)发生反应,从而将Ce(Ⅳ)从PN-CQDs表面移除, PN-CQDs的荧光得以恢复,荧光信号重新"打开"。在优化的实验条件下, DA浓度与PN-CQDs在λex/λem=326/408 nm处的荧光恢复值ΔF呈良好线性关系,线性范围为2.5×10-7~1.0×10-5mol·L^-1,决定系数R2为0.997 6,检出限为9.0×10-8mol·L^-1。探讨了体系的荧光"猝灭-恢复"机理,对PN-CQDs和PN-CQDs-Ce(Ⅳ)体系进行了荧光寿命拟合,其加权平均荧光寿命分别为6.02与5.15 ns, Ce(Ⅳ)对PN-CQDs荧光猝灭类型为动态猝灭;反应中生成的Ce(Ⅲ)于λex/λem=251/350 nm处的荧光对DA的测定无影响。该方法灵敏、简便、快速,应用于实际样品中DA的测定,加标回收率(平均值±SD)在97.5%±1.3%~103%±1.5%之间,结果满意。该研究提供了一种新的DA荧光检测方法,实现了对DA的准确测定。  相似文献   

18.
铝在人体中的代谢极其缓慢,摄入的铝会在体内不断积累,而异常浓度的Al^3+会破坏中枢神经系统,导致严重的神经性疾病,因此如何高效灵敏地检测Al^3+至关重要。荧光探针因具有携带方便、检测快速简单、价格低廉、选择性好等显著优点被广泛用于分析检测金属离子。大量研究中对于Al^3+的检测都是以单探针基团(single-probe group,SPG)分子以1∶1,2∶1,3∶1等进行配位。本文研究了一种活性三聚氯氰作为连接桥基团,罗丹明B酰胺和席夫碱衍生物对氨基苯甲酰水杨酸作为双探针基团(dual-probe group,DPG)的聚氰分子(RBCS),其采用易于控制的热动力学方法一步法制备得到。固定RBCS+Al^3+的浓度总和为20μmol·L^-1,改变二者的浓度比,通过Job-plot光学实验研究表明当离子占总浓度的比例在约0.68时578 nm处的荧光强度达到最高值,表明RBCS与Al^3+之间主要以1∶2进行配位。通过MALDI-TOF-MASS研究发现,相比无Al^3+的谱图,RBCS-Al^3+在900.07附近出现的新峰进一步验证了该DPG聚氰分子(RBCS)和Al^3+是以1∶2发生络合。通过探针RBCS(10 mg)中加入0,0.5,1,2,3当量Al^3+后的1H NMR滴定实验,对比特征H位置的变化,详细研究出RBCS对Al^3+的识别机理。研究表明当Al^3+存在时,Al^3+与RBCS上罗丹明酰胺部分羰基O,胺基N和三氰上N发生络合导致罗丹明酰胺开环,同时席夫碱部分的亚胺基团的N以及羧酸根和酚基的两个O也分别和Al^3+结合,使得CN键得到固化,整体的共轭性增加,从而产生荧光。综上所述,该聚氰分子(RBCS)可作为识别Al^3+的双探针基团分子。在365 nm紫外灯照射下RBCS-Al^3+表现出橙红色荧光,并随着Al^3+浓度的增加荧光逐渐增强。通过对RBCS光学性能测试条件的优化,最终选定在乙醇/水(99/1,V/V)溶液进行光学性能研究。通过荧光滴定实验测试了在激发波长557 nm,发射波长578 nm下RBCS(10μmol·L^-1)对不同浓度Al^3+(0.01~8 eq)的荧光强度变化,并对数据做线性回归处理,方程为y=32.3360+65.3641x,R2=0.9933,线性范围为1~10μmol·L^-1。通过3σ/k算得RBCS对Al^3+的检出限为15.0 nmol·L^-1。本研究可为设计DPG分子用于金属离子的检测提供参考。  相似文献   

19.
邻菲罗啉荧光猝灭法测定血清中的镉   总被引:1,自引:0,他引:1  
基于镉对邻菲罗啉的荧光具有猝灭的特性,建立了一种测定血清中痕量镉的方法。该方法的最大激发波长为225nm,最大发射波长为363nm,线性范围为10.0μg—1.0mg·L^-1,相关系数为0.9956,检出限为0.14μg·L^-1对于2.0μg·L^-1的Cd^2+标准溶液测定10次的相对标准偏差为0.54%。用该方法测定了血清中的镉,结果令人满意。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号