首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Strongly white-emitting (lambda(max) = 495 +/- 10 nm) D- and L- penicillamine capped CdS nanoparticles, which show strong circular dichroism in the range 200-390 nm, have been prepared.  相似文献   

2.
We demonstrate the organization of nearly monodisperse colloidal InP quantum dots at the air/water interface in Langmuir monolayers. The organization of the particles is monitored in situ by surface pressure-surface area measurements and ex situ by AFM measurements on films transferred to mica by Langmuir-Blodgett deposition. The influence of different ligands on the quality of the monolayer formed has been studied. We show that densely packed monolayers with little holes can be formed using short chain ligands like pyridine and pentamethylene sulfide. The advantage of using short chain ligands for electron tunneling to or from the quantum dots is demonstrated using scanning tunneling spectroscopy.  相似文献   

3.
4.
Ultrasensitive cysteine sensing using citrate-capped CdS quantum dots   总被引:1,自引:0,他引:1  
Wang GL  Dong YM  Yang HX  Li ZJ 《Talanta》2011,83(3):943-947
The importance of cysteine (Cys) in biological systems has stimulated a great deal of efforts in the development of analytical methods for the determination of this amino acid. In this work, a novel fluorescent probe for Cys based on citrate (Cit)-capped CdS quantum dots (QDs) is reported. The Cit-capped CdS QDs fluorescent probe offers good sensitivity and selectivity for detecting Cys. A good linear relationship was obtained from 1.0 × 10−8 mol L−1 to 5.0 × 10−5 mol L−1 for Cys. The detection limit was calculated as 5.4 × 10−9 mol L−1. The proposed method was applied to detect Cys in human urine samples, which showed satisfactory results. This assay is based on both the lability of Cit and the strong affinity of thiols to the surface of CdS QDs. The addition of Cys improved the passivation of the surface traps of CdS QDs and enhanced the fluorescence intensity.  相似文献   

5.
Toxicities of CdSe and CdSe/CdS quantum dots(QDs) synthesized by ultrasound-assisted methods were investigated in vitro and in vivo.Five human cell lines were used to assess the cytotoxicity of as-prepared CdSe and CdSe/CdS by assays of MTT viability,red blood cell hemolysis,flow cytometry,and fluorescence imaging.The results show that these QDs may be cytotoxic by their influence in S and G2 phases in cell cycles.The cytotoxicity of QDs depends on both the physicochemical properties and related to target cells.  相似文献   

6.
In the study,we observed the strong adsorption of CdTe/CdS QDs to antibodies and the formation of QDs-antibodies conjugates. Capillary electrophoresis with laser-induced fluorescence detection(CE-LIF),fluorescence spectrometry and fluorescence correlation spectroscopy(FCS) were used to characterize the QDs conjugates with antibody.We found that the QDs-antibody conjugates possessed high fluorescence,small hydrodynamic radii and good stability in aqueous solution.  相似文献   

7.
CdS nanoparticles with sizes where a quantum-size effect is observed are structurally characterized in a detailed way. The following complex of structural methods is used to characterize the nanoparticles: electron diffraction; analytical, diffraction, and high-resolution transmission electron microscopy; and small-angle X-ray scattering.  相似文献   

8.
In this contribution, we have studied structural and photophysical properties of aggregated CdS quantum dots (QDs) capped with 2-mercaptoethanol in aqueous medium. The hydrodynamic diameter of the nanostructures in aqueous solution was found to be approximately 160 nm with the dynamic light scattering (DLS) technique, which is in close agreement with atomic force microscopy (AFM) studies (diameter approximately 150 nm). However, the UV-vis absorption spectroscopy, powder X-ray diffraction (XRD), and transmission electron microscopy (TEM) studies confirm the average particle size (QD) in the nanoaggregate to be 4.0 +/- 0.5 nm. The steady-state and time-resolved photoluminescence studies on the QDs further confirm preservation of electronic band structure of the QDs in the nanoaggregate. To study the nature of the nanoaggregate we have used small fluorescent probes, which are widely used as biomolecular ligands (2,6-p-toluidinonaphthalene sulfonate (TNS) and Oxazine 1), and found the pores of the aggregate to be hydrophobic in nature. The significantly large spectral overlap of the host quantum dots (donor) with that of the guest fluorescent probe Oxazine 1 (acceptor) allows us to carry out F?rster resonance energy transfer (FRET) studies to estimate average donor-acceptor distance in the nanostructure, found to be approximately 25 Angstrom. The quantum dot aggregate and the characterization techniques reported here could have implications in the future application of the QD-nanoaggregate as host of small ligand molecules of biological interest.  相似文献   

9.
A photoelectroactive film composed of CdS quantum dots and graphene sheets (GS) was coated on F-doped SnO2 (FTO) conducting glass for studying the electrochemical response of p-phenylenediamine (PPD) under photoirradiation. The result indicated that the cyclic voltammogram of PPD on CdS–GS hybrid film became sigmoidal in shape after exposed under visible light, due to the photoelectrocatalytic reaction. Such a photovoltammetric response was used to rapidly optimize the photoelectrocatalytic activity of hybrid films composed of different ratios of CdS to GS toward PPD. The influences of scan rate and pH on the photovoltammetric behavior of PPD on CdS–GS film revealed that although the controlled step for electrochemical process was not changed under photoirradiation, more electrons than protons might participate the photoelectrocatalytic process. Furthermore, the photoelectroactive CdS–GS hybrid film was explored for PPD determination based on the photocurrent response of film toward PPD. Under optimal conditions, the photocurrent signal on CdS–GS film was linearly proportional to the concentration of PPD ranging from 1.0 × 10−7 to 3.0 × 10−6 mol L−1, with a detection limit (3S/N) of 4.3 × 10−8 mol L−1. Our work based on CdS–GS hybrid film not only demonstrated a new facile photovoltammetric way to study the photoinduced electron transfer process of PPD, but also developed a sensitive photoelectrochemical strategy for PPD determination.  相似文献   

10.
CdS nanoparticles on the surface of single-walled carbon nanotubes (SWNTs) were templated and stabilized through the initial attachment of 1 --> 3 C-branched amide-based dendrons and were both photophysically and morphologically characterized. The CdS clusters were shown to be ca. 1.4 nm in diameter as calculated from their optical absorption spectra and exhibited reduced fluorescence emission intensity at 434 nm compared to that of CdS quantum dots stabilized by untethered dendrons due to partial emission quenching by the SWNT. Unchanged UV absorption behavior of these materials indicated that they are stable > 90 days at 25 degrees C.  相似文献   

11.
This paper describes the synthesis of core-shell CdSe/CdS quantum dots (QDs) in aqueous solution by a simple photoassisted method. CdSe was prepared from cadmium nitrate and 1,1-dimethylselenourea precursors under illumination for up to 3 h using a pulsed Nd:YAG laser at 532 nm. The effects that the temperature and the laser irradiation process have on the synthesis of CdSe were monitored by a series of experiments using the precursors at a Cd:Se concentration ratio of 4. Upon increasing the temperature (80-140 degrees C), the size of the CdSe QDs increases and the time required for reaching a maximum photoluminescence (PL) is shortened. Although the as-prepared CdSe QDs possess greater quantum yields (up to 0.072%) compared to those obtained by microwave heating (0.016%), they still fluoresce only weakly. After passivation of CdSe (prepared at 80 degrees C) by CdS using thioacetamide as the S source (Se:S concentration ratio of 1) at 80 degrees C for 24 h, the quantum yield of the core-shell CdSe/CdS QDs at 603 nm is 2.4%. Under UV irradiation of CdSe/CdS for 24 h using a 100-W Hg-Xe lamp, the maximum quantum yield of the stable QDs is 60% at 589 nm. A small bandwidth (W1/2 < 35 nm) indicates the narrow size distribution of the as-prepared core-shell CdSe/CdS QDs. This simple photoassisted method also allows the preparation of differently sized (3.7-6.3-nm diameters) core-shell CdSe/CdS QDs that emit in a wide range (from green to red) when excited at 480 nm.  相似文献   

12.
Feasibility was demonstrated for obtaining ultrasmall colloidal CdS nanoparticles (with diameter about 2 nm) stabilized in aqueous solution by polyethylenimine with a narrow size distribution (~10%) and luminescing at 400-600 nm (quantum yield about 10%). Complexation between CdII and polyethylenimine is a necessary condition for formation of such nanoparticles.  相似文献   

13.
在碱性条件下,硫化镉量子点对鲁米诺-H2O2化学发光体系具有显著的增敏作用,而苯酚对该体系的化学发光有强烈抑制作用,以此建立了流动注射化学发光检测苯酚的新方法.在优化实验条件下,苯酚浓度在5.0×10-9 ~5.0×10-7g/L(r=0.9935)和5.0×10-6 ~1.0×10-3g/L(r=0.9982)范围内...  相似文献   

14.
Nanoparticles of CdS were prepared at 303 K by aqueous precipitation method using CdSO4 and (NH4)2S in presence of the stabilizing agent thioglycerol. Adjustment of the thioglycerol (T) to ammonium sulphide (A) ratio (T:A) from 1:25 to 1:3.3 was done during synthesis and nanoparticles of different size were obtained. The prepared colloids were characterized by UV-vis and photoluminescence (PL) spectroscopic studies. Prominent first and second excitonic transitions are observed in the UV-vis spectrum of the colloid prepared with a T:A ratio of 1:3.3. Particle size analysis was done using XRD, high resolution TEM and dynamic light scattering and found to be approximately 3 nm. UV-vis and PL spectral features also agree with this particle size in colloid with T:A of 1:3.3. The band gap of CdS quantum dots has increased from the bulk value 2.4-2.9 eV. PL spectra show quantum size effect and the peak is shifted from 628 to 556 nm when the ratio of T:A was changed from 1:25 to 1:3.3. Doping of CdS with Zn2+ and Cu2+ is found to enhance the PL intensity. PL band shows blue-shift and red-shift on doping with Zn2+ and Cu2+, respectively. UV and PL spectral features of the CdS/Au hybrid nanoparticles obtained by a physical mixing of CdS and Au nanoclusters in various volume ratios is also discussed. Au red-shifts and rapidly quenches the PL of CdS. An additional low energy band approximately 650 nm is observed in the UV visible spectrum of the hybrid nanoparticles.  相似文献   

15.
The CdS and CdS-Ag core-shell quantum dots (QDs) have been prepared. The nanostructures of the QDs were revealed by transmisson electron microscopy and absorption spectra, respectively. The third-order nonlinear optical properties of the core-shell QDs have been studied by using Z-scan technique with femtosecond pulses at the wavelength of 790 nm. The value of the effective nonlinear absorption coefficient beta(eff) of CdS-Ag QDs is measured to be about 16.8 cm/GW, which is about 400 times larger than that of bare CdS QDs of 3.9 x 10(-2) cm/GW. The nonlinear refraction index gamma of CdS-Ag QDs is about -2.3 x 10(-4) cm(2)GW, which is about 200 times larger than that of bare CdS QDs of 1.0 x 10(-6) cm(2)GW.  相似文献   

16.
Water-soluble silica-overcoated CdS:Mn/ZnS semiconductor quantum dots   总被引:2,自引:0,他引:2  
Highly luminescent and photostable CdS:Mn/ZnS core/shell quantum dots are not water soluble because of their hydrophobicity. To create water-soluble quantum dots by an appropriate surface functionalization, CdS:Mn/ZnS quantum dots synthesized in a water-in-oil (W/O) microemulsion system (reverse micelles) were consecutively overcoated with a very thin silica layer ( approximately 2.5 nm thick) within the same reverse micellar system. The water droplet serves as a nanosized reactor for the controlled hydrolysis and condensation of a silica precursor, tetraethyl orthosilicate (TEOS), using an ammonium hydroxide (NH4OH) catalyst. Structural characterizations with transmission electron microscopy (TEM) and x-ray photoelectron spectroscopy (XPS) indicate that the silica-quantum dot nanocomposites consist of a layered structure. Owing to the amorphous, porous nature of a silica layer, the optical and photophysical properties of silica-overcoated CdS:Mn/ZnS quantum dots are found to remain close to those of uncoated counterparts.  相似文献   

17.
A novel, sensitive and convenient determine technology based on the quenching of the fluorescence intensity of functionalized CdS quantum dots by sulfadiazine was proposed. Luminescent CdS semiconductor quantum dots (QDs) modified by thioglycollic acid (TGA) were synthesized with the microwave method. The modified CdS QDs are water-soluble, stable and highly luminescent. The possible mechanism for the reaction was also discussed. When sulfadiazine was added into the CdS QDs colloid solution, the surface of CdS QDs generates the electrostatic interaction in aqueous medium, which induces the quenching of fluorescence emission at 489 nm. Under optimum condition, the fluorescence intensity versus sulfadiazine concentration gave a linear response according Stern-Volmer equation with an excellent 0.9981 correlation coefficient. The linearity range of the calibration curve was 1.2 x 10(-5) to 2.13 x 10(-3) mol L(-1). The limit of detection (3delta) is 8.0 micromol L(-1). The relative standard deviation for five determinations of 0.13 x 10(-3)mol L(-1) sulfadiazine is 1.4%. The concentrations of sulfadiazine injections were determined by the proposed method with a satisfactory result.  相似文献   

18.
Zeolite Y films (0.35-2.5 μm), into which CdS and PbS quantum dots (QDs) were loaded, were grown on ITO glass. The CdS QD-loaded zeolite Y films showed a photovoltaic effect in the electrolyte solution consisting of Na(2)S (1 M) and NaOH (0.1 M) with Pt-coated F-doped tin oxide glass as the counter electrode. In contrast, the PbS QD-loaded zeolite Y films exhibited a negligible PV effect. This contrasting behavior was proposed to arise from the large difference in driving force for the electron transfer from S(2-) in the solution to the hole in the valence band of QDs, with the former being much larger (~2 eV) than the latter (~1 eV). In the case of CdS QD-loaded zeolite Y with a loaded amount of CdS of 6.3 per unit cell, the short circuit current, open circuit voltage, fill factor, and efficiency were 0.3 mA cm(-2), 423 V, 28, and 0.1%, respectively, under the AM 1.5, 100 mW cm(-2) condition. This cell was stable for more than 18 days of continuous measurements. A large (3-fold) increase in overall efficiency was observed when PbS QD-loaded zeolite Y on ITO glass was used as the counter electrode. This phenomenon suggests that the uphill electron transfer from ITO glass to S in the solution is facilitated by the photoassisted pumping of the potential energy of the electron in ITO glass to the level that is higher than the reduction potential of S by PbS QDs. Under this condition, the incident-photon-to-current conversion efficiency (IPCE) value at 398 nm was 42% and the absorbed-photon-to-current conversion efficiency (APCE) value at 405 nm was 82%. The electrolyte-mediated interdot charge transport within zeolite films is concluded to be responsible for the overall current flow.  相似文献   

19.
《Chemical physics letters》2002,350(3-4):357-360
Formation of nanoparticles of both ZnSe and CdS under ablation of corresponding bulk semiconductors in liquid environment (diethyleneglycol, ethanol, etc.) using radiation of a Cu vapor laser is reported. X-ray diffraction (XRD), resonance Raman scattering (RRS), and transmission electron microscopy (TEM) confirm that the nanoparticles are crystalline and have average size of ca 10–20 nm. RRS of nanoparticles are characterized by several peaks multiple to frequency of corresponding phonon (LO replicas).  相似文献   

20.
Ordered, tightly packed aryl-azide-terminated, self-assembled monolayers (SAMs) were created on gold substrates from a new disulfide precursor. These monolayers were reduced at least partially in an aqueous environment using approximately 2 nm CdS quantum dots (Qdots) as photocatalysts to give mixed monolayers of arylamine- and aryl azide-terminated species. The CdS photocatalysts were made available for the reaction by exposure of the azide-terminated SAM to Qdots initially in solution or by preadsorption of the CdS nanoparticles on the SAM. In either case, X-ray photoelectron spectroscopy (XPS), grazing angle Fourier transform infrared spectroscopy (FTIR), and contact angle measurements were used to show the occurrence of the photocatalytic reduction. As further evidence for the presence of arylamine-terminated thiolate in the reduced SAM, these arylamine groups were successfully tagged with fluorescein isothiocyanate (FITC). The use of Qdot photocatalysts to functionalize surfaces may lead to a means to pattern surfaces at the nanoscale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号