首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
The structures of dimers of several types of dimethylphosphinous acid (CH3)2POH and dimethylphosphine oxide (CH3)2P(O)H and dimers of the corresponding perfluorinated derivatives (CF3)2POH and (CF3)2P(O)H were studied in detail by density functional theory with the PBE gradient-corrected functional and the TZ2p basis set. Fairly strong dimeric associates (2.50–10.5 kcal/mol) were shown to form thanks to O-H···O, O-H···P, and C-H···O H-bonds and dipole-dipole interactions of polar phosphoryl groups P → O of two monomer molecules. The existence of C-H···O and the absence of P-H···O H-bonds in (CH3)2P(O)H dimers was substantiated by an AIM (atoms in molecules) analysis of their structures according to Bader. The reaction coordinates were calculated for synchronous transfer of two protons in (CH3)2POH and (CF3)2P(O)H dimers. Both rearrangements were shown to occur via symmetrical six-membered planar transition states with activation barriers of less than 20 kcal/mol, which was much lower than for intramolecular transfer in the corresponding monomers (47 kcal/mol for the (CH3)2P(O)H → (CH3)2POH pair). The tautomeric transitions between the phosphinous acid and phosphine oxide forms observed experimentally in nonpolar media under mild conditions in the absence of molecules that could act as proton carriers were shown to proceed as bimolecular reactions with the intermediate formation of the corresponding dimers.  相似文献   

2.
The tautomerization energies for the reaction R2P(O)H R2P-OH, where R= OH, OCH3, OC2H5, CH3, and CF3, have been calculated by the CNDO/2 method with optimization of the exponents of the Slater 3d AO's according to the criterion of a minimum total energy for the molecule. The results are in qualitative agreement with the experimental data. The MNDO and CNDO/2 calculations with the use of a standard sp basis predict greater stability for the structures with a three-coordinate phosphorus atom, in contradiction to experiment.Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 25, No. 4, pp. 486–490, July–August, 1989.In conclusion, we express our thanks to V. L. Foss for showing an interest in this work and for some valuable discussions.  相似文献   

3.
A complete conformational analysis on the isolated and polarizable continuum model (PCM) modeled aqueous solution cation, quinonoidal, and anion forms of pelargonidin, comprising the diverse tautomers of the latter forms, was carried out at the B3LYP/6-31++G(d,p) level. The results indicate that the most stable conformer of cationic and quinonoidal forms of pelargonidin are completely planar in the gas phase, whereas that of the anionic form is not planar. In contrast, PCM calculations show that the plane of the B ring is slightly rotated with regard to the AC bicycle in the most stable conformer of the cation and quinonoidal form. The most stable conformers of the cation, both in gas phase and aqueous solution, display anti and syn orientations for, respectively, C2-C3-O-H and C6-C5-O-H dihedral angles, whereas syn and anti orientation of hydroxyls at 7 and 4' positions are nearly isoenergetic. The most stable tautomer of quinonoidal pelargonidin is obtained by deprotonating hydroxyl at C5 in gas phase but at C7 according to PCM. Also, the most stable tautomer of the anion is different in gas phase (hydrogens are abstracted from hydroxyls at C5 and C4') and PCM simulation (C3 and C5). Tautomeric equilibria affect substantially the geometries of the AC-B backbone providing bond length variations that basically agree with the predictions of the resonance model. Most of the conformers obtained display an intramolecular hydrogen bond between O3 and H6'. Nevertheless, this interaction is not present in the most stable anions. Ionization potentials and O-H bond dissociation energies computed for the most stable conformers of cation, quinonoidal, and anion forms are consistent with an important antioxidant activity.  相似文献   

4.
The intermolecular interaction of the benzene-water complex is calculated using real-space pseudopotential density functional theory utilizing a van der Waals density functional. Our results for the intermolecular potential energy surface clearly show a stable configuration with the water molecule standing above or below the benzene with one or both of the H atoms pointing toward the benzene plane, as predicted by previous studies. However, when the water molecule is pulled outside the perimeter of the ring, the configuration of the complex becomes unstable, with the water molecule attaching in a saddle point configuration to the rim of the benzene with its O atom adjacent to a benzene H. We find that this structural change is connected to a change in interaction from H (water)/pi cloud (benzene) to O (water)/H (benzene). We compare our results for the ground-state structure with results from experiments and quantum-chemical calculations.  相似文献   

5.
Density functional theory calculations have been used to investigate the chemisorption of H, S, SH, and H(2)S as well as the hydrogenation reactions S+H and SH+H on a Rh surface with steps, Rh(211), aiming to explain sulfur poisoning effect. In the S hydrogenation from S to H(2)S, the transition state of the first step S+H-->SH is reached when the S moves to the step-bridge and H is on the off-top site. In the second step, SH+H-->H(2)S, the transition state is reached when SH moves to the top site and H is close to another top site nearby. Our results show that it is difficult to hydrogenate S and they poison defects such as steps. In order to address why S is poisoning, hydrogenation of C, N, and O on Rh(211) has also been calculated and has been found that the reverse and forward reactions possess similar barriers in contrast to the S hydrogenation. The physical origin of these differences has been analyzed and discussed.  相似文献   

6.
黄酮类化合物的密度泛函理论研究   总被引:1,自引:0,他引:1  
在混合密度泛函B3LYP理论下,用6-31G*基函数研究了几种典型黄酮类化合物分子的几何结构、电子结构和分子的静电势,讨论了电子结构和分子活性部位的关系.  相似文献   

7.
The aqueous solvation of hydrochloric acid is studied using density functional theory based molecular dynamics simulations at two concentrations. The large simulation boxes that we use allow us to investigate larger-scale structures such as the water-bridged chloride ion network. We find a strong concentration dependence for almost all structural and dynamical properties. Excess protons are mostly present both as Eigen and Zundel structures, either as a direct hydronium-chloride contact-ion pair or a solvent-separated ion pair. Increasing the concentration has a detrimental effect on the natural hydrogen bonded network of water molecules. This effect is visible in our studies as a decrease in the persistence time of the solvation shells around the chloride ions. Also the number of proton hops, determined by a new and well defined identification procedure, suffers from the breakdown of the natural hydrogen bond network.  相似文献   

8.
A new mild procedure of the amidoalkylation of hydrophosphoryl compounds in a mixture of acetic anhydride and acetyl chloride was developed as a convenient method of constructing the α-aminophosphoryl fragment of the pseudo-α,α′-dipeptide molecule. The reaction intermediates N,N′-benzylidene- and N,N′-alkylidenebiscarbamates were detected, isolated, and identified. The report presents the results of studying the direct interaction of hydrophosphoryl compounds previously synthesized with biscarbamates in acetic anhydride and other solvents, the influence of the structure of phosphorus component and biscarbamate, and the effect of acid catalysis on the course of this two-component reaction. A new version of the mechanism of the three-component reaction of amidoalkylation of hydrophosphoryl compounds is suggested: it is regarded as a multistage process involving the stage of biscarbamate formation followed by the stage of Arbuzov-type reaction with the intermediate formation of acyliminium cation and P-OAc derivative with trivalent phosphorus.  相似文献   

9.
The geometries of four isomers of the trimethylsilyl substituted phthalocyanine (Pc)— I , II , III , and IV —have been optimized at the B3LYP/3‐21G level of density functional theory. Normal‐mode vibrational analyses have been performed and their standard thermodynamic functions, molar fractions, and electronic absorption spectra calculated. Single‐point energies have been calculated at the B3LYP/6‐311G* level for all isomers to evaluate the heats of formation from an isodesmic reaction. It is found that substitution has little influence on the geometry and electronic structures of the Pc framework. The corresponding geometric parameters in various isomers are close. According to the B3LYP/6‐311G*//B3LYP/3‐21G results, substitution at the peripheral position of the isoindole with an inner hydrogen is most favorable. The energies increase in the order of IV < II < III < I , and the energy difference between IV and I is 5.75 kJ/mol. The molar fractions of IV , II , III , and I are 0.80, 0.17, 0.02, and 0.02 and the heats of formation are 2009.96, 2010.10, 2015.85, and 2016.52 kJ/mol, respectively. This indicates that nonperipheral substituted Pcs have higher energy and little production because they are not stable under the considered conditions. The electronic spectra of the substituted Pcs calculated using the ZINDO method have two strong Q absorption bands around 700 nm and one B band around 300 nm that are slightly shifted compared with those in Pc. The ratios of the oscillator strength of the B band to the Q bands are much lowered by trimethylsilyl substitution. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem, 2002  相似文献   

10.
A theoretical study of the structure and the vibrational spectra of the beta-carotene molecule and its derivatives capsanthin and capsorubin is carried out. We first investigate systematically the theoretical method which provides the best results for beta-carotene by performing ab initio calculations at the HF/6-31G(d), SVWN/6-31G(d), PBE0/6-31G(d), BLYP/6-31G(d), B3LYP/6-31G(d), B3LYP/6-31G(d,p), B3LYP/6-311G(d), and B3LYP/6-311G(d,p) levels and by using previous theoretical results available in the literature obtained at the AM1 and BPW91/6-31G(d) levels. The influence of both the level of calculation and the size of the basis set used in the geometry optimization and in the determination of the IR and Raman spectra of this molecule is thus analyzed. It is confirmed that the hybrid functional B3LYP with the basis 6-31G(d) is the method that gives the best results as a whole. By use of this level of calculation, we next optimize the molecular geometries of related molecules of capsanthin and capsorubin, which to the best of our knowledge have only been studied at the semiempirical AM1 level. In addition we calculate the IR and Raman spectra of these molecules at the B3LYP/6-31G(d) level of theory. The results obtained for capsanthin show on the one hand that the double bond of the beta-ionone ring is outside the polyene chain plane, due to the repulsion between the hydrogen atoms of the ring methyl groups and the hydrogen atoms of the polyene chain, and on the other hand that the carbonyl double bond in the other headgroup is very close to planarity with the polyene chain, since in this case such a repulsion does not exist. For the molecule of capsorubin the two carbonyl groups also take the same coplanar orientation relative to the polyene chain. The IR and Raman spectra theoretically computed for these two molecules are finally compared with their experimental spectra and the vibrational normal modes of the main signals are interpreted.  相似文献   

11.
The density functional method (gradient-corrected nonempirical functional PBE, basis TZ2p) was used to perform a large-scale study of the mechanism of tautomerization of hydrophosphoryl compounds RR′P (H)O ? RR′POH (R,R′ = Alk, Ar, OR, NR2). It was shown that intramolecular proton transfer in this rearrangement is forbidden (activation barriers 43.3–60 kcal mol?1), and, in the absence of carrier molecules, it occurs as synchronous transfer of two protons in fairly strong dimeric associates (2.50–10.5 kcal mol?1) formed due to O-H···O, O-H···P, and C-H···O hydrogen bonding. The process involves six-membered transition states with activation barriers of 5–15 kcal mol?1. The contribution of tunneling into the rate constants at 300–400 K, according to estimates in terms of the reaction-path Hamiltonian formalism, reaches 20–40% and increases as the temperature decreases. The mechanism of ethylene hydroformylation in a model complex of a hydrophosphoryl compound with Pt(II) [(H2PO)2H]Pt(PH3)(H)] was considered to reveal factors responsible for the high efficiency of such complexes in the reaction studied. It was found that the key stages of the catalytic cycle involve reversible proton migration in the ?PH2OH··· O=P chain of the quasi-chelate ring, which provides fine tuning of the electron distribution in the catalytic node and thus functions as a molecular switcher.  相似文献   

12.
We present a systematic density functional theory study of the electronic structure of copper phthalocyanine (CuPc) using several different (semi)local and hybrid functionals and compare the results to experimental photoemission data. We show that semilocal functionals fail qualitatively for CuPc primarily because of underbinding of localized orbitals due to self-interaction errors. We discuss an appropriate choice of functional for studies of CuPc/metal interfaces and suggest the Heyd-Scuseria-Ernzerhof screened hybrid functional as a suitable compromise functional.  相似文献   

13.
采用密度泛函理论B3LYP/6-31++G(d,p)方法,对纤维素热解的主要产物左旋葡聚糖的热解反应机理进行了理论计算分析,设计了四种可能的热解反应途径, 对各种反应的反应物、产物和过渡态的结构进行了能量梯度全优化。计算结果表明,左旋葡聚糖开环成链状中间体时,首先,左旋葡聚糖中的两个半缩醛键C(1)-O(7)和C(6)-O(8)断裂,经过渡态TS1形成中间体IM1,同时,C(6)-O(7)结合成键使C(5)-C(6)-O(7)形成环状结构,该反应的能垒较高,为296.53 kJ/mol,然后IM1经过渡态TS2转变为中间体IM2,该反应的能垒为234.09 kJ/mol;对IM2设计了四条可能的反应路径,反应路径2和3能垒较低,是IM2最可能的热解反应途径;在反应路径1和4中都包含了脱羰基反应,其反应能垒较高,不易发生。  相似文献   

14.
Covalent functionalization of a zigzag boron nitride nanotube (BNNT) with acetylene has been investigated by density functional theory in terms of energetic, geometric, and electronic properties. It has been found that the most stable functionalized BNNT is the one in which the acetylene is diffused into the tube wall so that two heptagonal and two pentagonal rings are formed, releasing energy of 1.54 eV. In addition, the effect of substituting the hydrogen atoms of C2H2 by different functional groups including –F, –CH2F, –CN, and –OCH3 on the geometric and electronic properties of the BNNT has been investigated. The reaction energies are found to be in the range of ?1.03 to ?3.13 eV so that their relative magnitude order is as follows: C2F2 > (OCH3)2C2 > C2H2 > (CH2F)2C2 > (CN)2C2, suggesting that the functionalization energy is increased by increasing the electron donating character of the functional groups. Overall, chemical modification of BNNT by the studied groups results in little changes in electronic properties of the tube and may be an effective way for the purification of BNNTs.  相似文献   

15.
Density functional theory calculations are reported for the reaction mechanism of selected XCuNHX(X = Cl, Br, I) with olefins to form three-membered ring products. The copper reagents react with olefins via an asynchronous attack on one CH2 group of ethylene with a relatively low barrier (<78 kJ/mol). These computational results are in good agreement with experimental results, and this suggests that the nitrene transfer process is favored. The BrCuNHBr is found to be the most reactive reagent in the XCuNHX (X = Cl, Br, I) series of reagents. These results are qualitatively consistent with the agreement between copper-catalyzed species character and experimental conditions needed for efficient reaction.  相似文献   

16.
The paper is a review of a series of publications devoted to a number of homogeneous and heterogeneous catalytic reactions, their mechanisms, and energy characteristics. These reactions are promoted by coordination unsaturated compounds of Ti and Zr and proceed with cleavage and/or formation of C-C and C-H bonds in the hydrocarbon chain (polymerization reaction of ethylene, styrene, and butadiene-1,3, hydrogenolysis and hydroisomerization of linear and branched alkanes, and H/D isotope exchange in alkanes). A high-level quantum chemical method (DFT, PBE functional, gauss type TZ2p basis sets, the original PRIRODA program) was applied for the catalytic systems under the study. The nature and the structure of the active center, detailed mechanisms, and energy profile of the reaction of the substrate with a catalytic particle are considered. We compare our data with the results of both experimental and theoretical contributions from other authors.  相似文献   

17.
Hydrogen bonding in complexes formed between formamide and guanine molecules was completely investigated using density functional theory (DFT) at the 6-311++G(d, p) level. For comparison, the HF and MP2 methods were also used. Nine stable cyclic structures stabilized by two hydrogen bonds were found. One of these was a six-membered ring, five were seven-membered rings, and the others were eight-membered rings. The eight-membered ring is preferable to the seven-and six-membered ones as follows from H-bond lengths and interaction energies. The FG4 structure was calculated to be the most stable, and another cyclic structure, FG5, was least stable because of the six-membered ring and the weakest interaction. The infrared spectrum frequencies, intensities, and vibrational frequency shifts are also reported. The text was submitted by the authors in English.  相似文献   

18.
Sulfur ylides are useful synthetic intermediates that are formed from the interaction between singlet carbenes and sulfur-containing molecules. Partial double-bond character frequently has been proposed as a key contributor to the stability of sulfur ylides. Calculations at the B3LYP, MP2, and CCSD(T) levels of theory employing various basis sets have been performed on the sulfur ylides H(2)S-CH(2) and (CH(3))(2)S-CH(2) in order to investigate the structure and bonding of these systems. The following general properties of sulfur ylides were observed from the computational studies: C-S bond distances that are close in length to that of a typical C-S double bond, high charge transfer from the sulfide to the carbene, and large torsional rotation barriers. Analysis of the sulfur ylide charge distribution indicates that the unusually short C-S bond distance can be attributed in part to the electrostatic attraction between highly oppositely charged carbon and sulfur atoms. Furthermore, n --> sigma* stabilization arising from donation of electron density from the carbon lone pair orbital into S-H or S-C antibonding orbitals leads to larger than expected torsional barriers. Finally, natural resonance theory analysis indicates that the bond order of the sulfur ylides H(2)S-CH(2) and (CH(3))(2)S-CH(2) is 1.4-1.5, intermediate between a single and double bond.  相似文献   

19.
The gas-phase acidity of D-glucopyranose was studied by means of B3LYP calculations combined with 6-31G(d,p) or 6-31+G(d,p) standard basis sets. For each anomer, deprotonation of the various primary and secondary hydroxyl groups was considered. As in solution, the anomeric hydroxyl is found to be the most acidic for both anomers, but only when the 6-31+G(d,p) basis set is used for geometry optimization. Deprotonation of the anomeric hydroxyl induces an important C(1)--O endocyclic bond elongation and subsequently promotes an energetically favored ring-opening process as attested by the very small calculated activation barriers. The results also suggest that interconversion between the various deprotonated alpha- and beta-anomers may easily occur under slightly energetic conditions. B3LYP/6-311+G(2df,2p) calculations led to the an absolute gas-phase acidity of deltaacidGo(298)(alpha-D-glucose) = 1398 kJ mol(-1). This estimate matches well the only experimental value available to date. Finally, this study again confirms that the use of diffuse functions on heavy atoms is necessary to describe anionic systems properly and to achieve good relative and absolute gas-phase acidities.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号