首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
张晓强  王光瑞  陈式刚 《中国物理 B》2009,18(12):5117-5122
In this paper, we consider spatial-temporal correlation functions of the turbulent velocities. With numerical simulations on the Gledzer--Ohkitani--Yamada (GOY) shell model, we show that the correlation function decays exponentially. The advecting velocity field is regarded as a colored noise field, which is spatially and temporally correlative. For comparison, we are also given the scaling exponents of passive scalars obtained by the Gaussian random velocity field, the multi-dimensional normal velocity field and the She--Leveque velocity field, introduced by She, et al. We observe that extended self-similarity scaling exponents H(p)/ H(2) of passive scalar obtained by the colored noise field are more anomalous than those obtained by the other three velocity fields.  相似文献   

2.
We propose a new approach to the old-standing problem of the anomaly of the scaling exponents of passive scalars of turbulence. Different to the original problem, the distribution function of the prescribed random velocity field is multi-dimensional normal and delta-correlated in time. Here, our random velocity field is spatially correlative. For comparison, we also give the result obtained by the Gaussian random velocity field without spatial correlation. The anomalous scaling exponents H(p) of passive scalar advected by two kinds of random velocity above are determined for structure function up to p=15 by numerical simulations of the random shell model with Runge-Kutta methods to solve the stochastic differential equations. We observed that the H(p)'s obtained by the multi-dimensional normal distribution random velocity are more anomalous than those obtained by the independent Gaussian random velocity.  相似文献   

3.
赵英奎  陈式刚  王光瑞 《中国物理》2007,16(10):2848-2854
In this paper, we have introduced a shell-model of Kraichnan's passive scalar problem. Different from the original problem, the prescribed random velocity field is non-Gaussian and $\delta$ correlated in time, and its introduction is inspired by She and L\'{e}v\^{e}que (Phys. Rev. Lett. {\bf 72}, 336 (1994)). For comparison, we also give the passive scalar advected by the Gaussian random velocity field. The anomalous scaling exponents $H(p)$ of passive scalar advected by these two kinds of random velocities above are determined for structure function with values of $p$ up to 15 by Monte Carlo simulations of the random shell model, with Gear methods used to solve the stochastic differential equations. We find that the $H(p)$ advected by the non-Gaussian random velocity is not more anomalous than that advected by the Gaussian random velocity. Whether the advecting velocity is non-Gaussian or Gaussian, similar scaling exponents of passive scalar are obtained with the same molecular diffusivity.  相似文献   

4.
Intermittency is a basic feature of fully developed turbulence, for both velocity and passive scalars. Intermittency is classically characterized by Eulerian scaling exponent of structure functions. The same approach can be used in a Lagrangian framework to characterize the temporal intermittency of the velocity and passive scalar concentration of a an element of fluid advected by a turbulent intermittent field. Here we focus on Lagrangian passive scalar scaling exponents, and discuss their possible links with Eulerian passive scalar and mixed velocity-passive scalar structure functions. We provide different transformations between these scaling exponents, associated to different transformations linking space and time scales. We obtain four new explicit relations. Experimental data are needed to test these predictions for Lagrangian passive scalar scaling exponents.  相似文献   

5.
The inertial range for a statistical turbulent velocity field consists of those scales that are larger than the dissipation scale but smaller than the integral scale. Here the complete scale-invariant explicit inertial range renormalization theory for all the higher-order statistics of a diffusing passive scalar is developed in a model which, despite its simplicity, involves turbulent diffusion by statistical velocity fields with arbitrarily many scales, infrared divergence, long-range spatial correlations, and rapid fluctuations in time-such velocity fields retain several characteristic features of those in fully developed turbulence. The main tool in the development of this explicit renormalization theory for the model is an exact quantum mechanical analogy which relates higher-order statistics of the diffusing scalar to the properties of solutions of a family ofN- body parabolic quantum problems. The canonical inertial range renormalized statistical fixed point is developed explicitly here as a function of the velocity spectral parameter, which measures the strength of the infrared divergence: for<2, mean-field behavior in the inertial range occurs with Gaussian statistical behavior for the scalar and standard diffusive scaling laws; for>2 a phase transition occurs to a fixed point with anomalous inertial range scaling laws and a non-Gaussian renormalized statistical fixed point. Several explicit connections between the renormalization theory in the model and intermediate asymptotics are developed explicitly as well as links between anomalous turbulent decay and explicit spectral properties of Schrödinger operators. The differences between this inertial range renormalization theory and the earlier theories for large-scale eddy diffusivity developed by Avellaneda and the author in such models are also discussed here.  相似文献   

6.
We study the small-scale statistics of active and passive scalar fields, obtained from 3D large-eddy simulations of the atmospheric boundary layer turbulence. The velocity field is anisotropic and inhomogeneous, due to the action of both buoyancy and shear. We focus on scalar field rare fluctuations dominated by the so-called fronts. Temperature, coupled to the velocity field by the Boussinesq equations, exhibits anomalous scaling and saturation of the scaling exponents to a constant value, due to the presence of thermal fronts. Although qualitatively similar, the small-scale statistics of a passive tracer advected by the convective flow shows quantitative differences: the large fluctuations of the tracer concentration field distribute differently and appear to be less intermittent than the temperature ones. To better understand these results, the role of boundaries in this problem is discussed.  相似文献   

7.
We investigate the large-scale statistics of a passive scalar transported by a turbulent velocity field by means of direct numerical simulations. We focus on scales larger than the characteristic length scale of scalar injection, yet smaller than the correlation length of the velocity. We show the existence of nontrivial long-range correlations in the form of new power laws for the decay of high-order coarse-grained scalar cumulants. This result contradicts the classical scenario of Gibbs equilibrium statistics that should hold in the absence of scalar flux. The breakdown of "thermal equilibrium" at large scales is traced back to the statistical geometry of turbulent dispersion of two scalar blobs. The numerical values obtained for the scaling exponents of the coarse-grained scalar cumulants are in agreement with recent theoretical results.  相似文献   

8.
9.
Using the field theoretic renormalization group technique the model of a passive vector field advected by an incompressible turbulent flow is investigated up to the second order of the perturbation theory (two-loop approximation). The turbulent environment is given by statistical fluctuations of the velocity field that has a Gaussian distribution with zero mean and defined noise with finite correlations in time. Two-loop analysis of all possible scaling regimes in general d-dimensional space is done in the plane of exponents ? ? η, where ? characterizes the energy spectrum of the velocity field in the inertial range Ek 1 ? 2ε, and η is related to the correlation time at the wave number k which is scaled as k ?2 + η. It is shown that the scaling regimes of the present model of vector advection have essentially different properties than the scaling regimes of the corresponding model of passively advected scalar quantity. The results demonstrate the fact that within the present model of passively advected vector field the internal tensor structure of the advected field can have nontrivial impact on the diffusion processes deep inside in the inertial interval of given turbulent flow.  相似文献   

10.
Using the field theoretic renormalization group technique the model of passively advected weak magnetic field by an incompressible isotropic helical turbulent flow is investigated up to the second order of the perturbation theory (two-loop approximation) in the framework of an extended Kazantsev-Kraichnan model of kinematic magnetohydrodynamics. Statistical fluctuations of the velocity field are taken in the form of a Gaussian distribution with zero mean and defined noise with finite correlations in time. The two-loop analysis of all possible scaling regimes is done and the influence of helicity on the stability of scaling regimes is discussed and shown in the plane of exponents ? ? η, where ? characterizes the energy spectrum of the velocity field in the inertial range Ek 1 ? 2ε, and η is related to the correlation time at the wave number k which is scaled as k ?2 + η. It is shown that in non-helical case the scaling regimes of the present vector model are completely identical and have also the same properties as those obtained in the corresponding model of passively advected scalar field. Besides, it is also shown that when the turbulent environment under consideration is helical then the properties of the scaling regimes in models of passively advected scalar and vector (magnetic) fields are essentially different. The results demonstrate the importance of the presence of a symmetry breaking in a given turbulent environment for investigation of the influence of an internal tensor structure of the advected field on the inertial range scaling properties of the model under consideration and will be used in the analysis of the influence of helicity on the anomalous scaling of correlation functions of passively advected magnetic field.  相似文献   

11.
Anomalous correlation functions of the temperature field in two-dimensional turbulent convection are shown to be universal with respect to the choice of external sources. Moreover, they are equal to the anomalous correlations of the concentration field of a passive tracer advected by the convective flow itself. The statistics of velocity differences is found to be universal, self-similar, and close to Gaussian. These results point to the conclusion that temperature intermittency in two-dimensional turbulent convection may be traced back to the existence of statistically preserved structures, as it is in passive scalar turbulence.  相似文献   

12.
We suggest a new, renormalization group (RG) based, nonperturbative method for treating the intermittency problem of fully developed turbulence which also includes the effects of a finite boundary of the turbulent flow. The key idea is not to try to construct an elimination procedure based on some assumed statistical distribution, but to make an ansatz for possible RG transformations and to pose constraints upon those, which guarantee the invariance of the nonlinear term in the Navier-Stokes equation, the invariance of the energy dissipation, and other basic properties of the velocity field. The role of length scales is taken to be inverse to that in the theory of critical phenomena; thus possible intermittency corrections are connected with the outer length scale. Depending on the specific type of flow, we find different sets of admissible transformations with distinct scaling behaviour: for the often considered infinite, isotropic, and homogeneous system K41 scaling is enforced, but for the more realistic plane Couette geometry no restrictions on intermittency exponents were obtained so far. Received: 28 December 1997 / Accepted: 6 August 1998  相似文献   

13.
Accounting for the modified orbits of plasma particles due to constant external electric and magnetic fields, a general expression for the velocity space diffusion tensor of a turbulent plasma is derived. The nonlinear frequency shift and the anomalous resistivity in the presence of external fields are calculated. It is shown that the effect of a strong external electric field on the frequency shift is to reduce its magnitude. Furthermore, the dependence of the anomalous resistivity on the external magnetic field is obtained.  相似文献   

14.
15.
In a magnetized plasma, resistive diffusion of large-scale magnetic fields can be suppressed or even overcome by a turbulently generated electromotive force. For a plasma in which the turbulence is homogeneous and isotropic this EMF is characterized by the ensemble average = ?B0, where ?v and ?b represent the turbulent fields and B0 defines the large-scale field. Determination of the statistical properties of the turbulence that are required to generate a finite alpha effect, as it has become known, is one of the central subjects of dynamo theory. Parker has shown that helical velocity fluctuations possessing a net amount of kinetic helicity are capable of dynamo action. These "cyclonic events" produce electromagnetic fluctuations characterized by their own statistical properties. Within the context of "mean-field electrodynamics" we show that these fluctuations possess a net amount of current helicity, and find that a necessary condition for dynamo action is that the turbulent current helicity and the current helicity in the large-scale field be of opposite sign.  相似文献   

16.
The influence of helicity on the anomalous scaling of the single-time structure functions of a passive scalar advected by a non-Gaussian velocity field driven by the stochastic Navier-Stokes equation is investigated by the field theoretic renormalization group and the operator-product expansion within the second order of the perturbation theory (two-loop approximation). The set of compositeoperators with the minimal critical dimensions is identified and their dependence on the helicity parameter is found. It is shown that the contribution to the critical dimensions of the structure functions of a passive scalar is given only by parts of the composite operators which are independent of the helicity parameter. Therefore, it is shown that the spatial parity violation has no impact on the anomalous scaling behavior of the passively advected scalar quantity in the turbulent environment.  相似文献   

17.
We develop a multi-length-scale (multifractal) theory for the effect of rock heterogeneity on the growth of the mixing layer of the flow of a passive tracer through porous media. The multifractal exponent of the size of the mixing layer is determined analytically from the statistical properties of a random velocity (permeability) field. The anomalous diffusion of the mixing layer can occur both on finite and on asymptotic length scales.  相似文献   

18.
In the present paper, the development of a high-resolution PIV-PLIF combined system for the simultaneous measurements of velocity and passive scalar concentration fields is described. The high-resolution PIV-PLIF combined system is used to perform the simultaneous whole-field measurements of velocity and concentration in the near field of a turbulent jet mixing flow. The characteristics of the mass transfer process and momentum transfer process in the near field of the jet mixing flows are discussed in the terms of ensemble-averaged velocity and concentration, turbulent intensity, concentration standard deviation and the correlation terms between the fluctuating velocities and concentration.  相似文献   

19.
A novel method to probe and characterize the nature of the transport of passive scalars carried out by a turbulent flow is introduced. It requires the determination of two exponents which encapsulate the statistical and correlation properties of the component of interest of the Lagrangian velocities of the flow. Numerical simulations of a magnetically confined, near-critical turbulent plasma, known to exhibit superdiffusive radial transport, are used to illustrate the method. It is shown that the method can easily detect the change in the dynamics of the radial transport that takes place after adding to the simulations a (subdominant) diffusive channel of tunable strength.  相似文献   

20.
The scaling behavior of the temperature structure functions in turbulent convection is found to be different for length scales below and above the Bolgiano scale. Both sets of the exponents are well described by log-Poisson statistics. The parameter beta(T) which measures the degree of intermittency is the same for the two regimes of scales and is consistent with the corresponding value for the passive scalar field. A balance between thermal forcing and nonlinear velocity advection, which is a key ingredient leading to Bolgiano scaling, is also checked.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号