首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Recently, hexaphyrins have emerged as a promising class of π-conjugated molecules that display a range of interesting electronic, optical, and conformational properties, including the formation of stable M?bius aromatic systems. Besides the M?bius topology, hexaphyrins can adopt a variety of conformations with Hückel and twisted Hückel topologies, which can be interconverted under certain conditions. To determine the optimum conditions for viable M?bius topologies, the conformational preferences of [26]- and [28]hexaphyrins and the dynamic interconversion between the M?bius and Hückel topologies were investigated by density functional calculations. In the absence of meso?substituents, [26]hexaphyrin prefers a planar dumbbell conformation, strongly aromatic and relatively strain free. The M?bius topology is highly improbable: the most stable tautomer is 33?kcal?mol(-1) higher in energy than the global minimum. On the other hand, the M?bius conformer of [28]hexaphyrin is only 6.5?kcal?mol(-1) higher in energy than the most stable dumbbell conformation. This marked difference is due to aromatic stabilization in the M?bius 4n electron macrocycle as opposed to antiaromatic destabilization in the 4n+2 electron system, as revealed by several energetic, magnetic, structural, and reactivity indices of aromaticity. For [28]hexaphyrins, the computed activation barrier for interconversion between the M?bius aromatic and Hückel antiaromatic conformers ranges from 7.2 to 10.2?kcal?mol(-1) , in very good agreement with the available experimental data. The conformation of the hexaphyrin macrocycle is strongly dependent on oxidation state and solvent, and this feature creates a promising platform for the development of molecular switches.  相似文献   

2.
Conformational flexibility and balance between M?bius aromatic and Hückel antiaromatic conformers in [28]hexaphyrins depend on N-fused structure and meso-aryl substituents, revealed by various spectroscopic methods. In particular, the existence of the two conformers has been confirmed for singly-N-fused [28]hexaphyrins by femtosecond time-resolved transient absorption spectroscopy.  相似文献   

3.
The switching of topology between “figure‐eight”, Möbius, and untwisted conformations in [32]heptaphyrins(1.1.1.1.1.1.1) has been investigated by using density functional theory calculations. Such a change is achieved by variation of one internal dihedral angle and, if properly controlled, can provide access to molecular switches with unique optical and magnetic properties. In this work, we have explored different conformational control methods, such as solvent, protonation and meso substituents. Despite its antiaromatic character, most of the [32]heptaphyrins (R=H, CH3, CF3, Ph, C6F5) adopt a figure‐eight conformation in the neutral state, owing to their more‐effective hydrogen‐bonding interactions. The aromatic Möbius topology is only preferred with dichlorophenyl groups, which minimize the steric hindrance that arises from the bulky chlorine atoms. The conformational equilibrium is sensitive to the solvent, so polar solvents, such as DMSO, further stabilize the Möbius conformation. Protonation induces a conformational change into the Möbius topology, irrespective of the meso‐aryl groups. In the triprotonated species, the conformational switch is blocked and a non‐twisted conformer becomes much more stable than the figure‐eight conformation. We have shown that the relative energies of the protonated [32]heptaphyrins are dominated by aromaticity. Importantly, this topology switching induces a dramatic change in the magnetic properties and reactivity of the macrocycles, as revealed by several energetic, magnetic, structural, and reactivity indices of aromaticity.  相似文献   

4.
meso-Aryl-substituted [28]hexaphyrins(1.1.1.1.1.1) have been examined by (1)H, (13)C, and (19)F NMR spectroscopies, UV-vis absorption spectroscopy, magnetic circular dichroism spectroscopy, and single-crystal X-ray diffraction analysis. All of these data consistently indicate that [28]hexaphyrins(1.1.1.1.1.1) in solution at 25 degrees C exist largely as an equilibrium among several rapidly interconverting twisted M?bius conformations with distinct aromaticities, with a small contribution from a planar rectangular conformation with antiaromatic character at slightly higher energy. In the solid state, [28]hexaphyrins(1.1.1.1.1.1) take either planar or M?bius-twisted conformations, depending upon the meso-aryl substituents and crystallization conditions, indicating a small energy difference between the two conformers. Importantly, when the temperature is decreased to -100 degrees C in THF, these rapid interconversions among M?bius conformations are frozen, allowing the detection of a single [28]hexaphyrin(1.1.1.1.1.1) species having a M?bius conformation. Detailed analyses of the solid-state M?bius structures of compounds 2b, 2c, and 2f showed that singly twisted structures are achieved without serious strain and that cyclic pi-conjugation is well-preserved, as needed for exhibiting strong diatropic ring currents. Actually, the harmonic-oscillator model for aromaticity (HOMA) values of these structures are significantly large (0.85, 0.69, and 0.71, respectively), confirming the first demonstration of stable M?bius aromatic systems consisting of free-base expanded porphyrins without the assistance of metal coordination.  相似文献   

5.
Recently, hexaphyrins have emerged as a promising class of π‐conjugated molecules that display a range of interesting electronic, optical, and conformational properties, including the formation of stable Möbius aromatic systems. Besides the Möbius topology, hexaphyrins can adopt a variety of conformations with Hückel and twisted Hückel topologies, which can be interconverted under certain conditions. To determine the optimum conditions for viable Möbius topologies, the conformational preferences of [26]‐ and [28]hexaphyrins and the dynamic interconversion between the Möbius and Hückel topologies were investigated by density functional calculations. In the absence of meso substituents, [26]hexaphyrin prefers a planar dumbbell conformation, strongly aromatic and relatively strain free. The Möbius topology is highly improbable: the most stable tautomer is 33 kcal mol?1 higher in energy than the global minimum. On the other hand, the Möbius conformer of [28]hexaphyrin is only 6.5 kcal mol?1 higher in energy than the most stable dumbbell conformation. This marked difference is due to aromatic stabilization in the Möbius 4n electron macrocycle as opposed to antiaromatic destabilization in the 4n+2 electron system, as revealed by several energetic, magnetic, structural, and reactivity indices of aromaticity. For [28]hexaphyrins, the computed activation barrier for interconversion between the Möbius aromatic and Hückel antiaromatic conformers ranges from 7.2 to 10.2 kcal mol?1, in very good agreement with the available experimental data. The conformation of the hexaphyrin macrocycle is strongly dependent on oxidation state and solvent, and this feature creates a promising platform for the development of molecular switches.  相似文献   

6.
Two types of annulene which may show significant M?bius aromatic character and bond and twist delocalisation are proposed; triplet states with 4n + 2 occupancy of the p pi array of atomic orbitals and a novel 8-pi carbeno[8]heteroannulene ring system 1 where the Hückel highly antiaromatic nature as a planar system can be attenuated or even reversed by the C2 symmetric M?bius distortion.  相似文献   

7.
Monocyclic [11]annulenium cations, which are experimentally unknown, have been studied primarily via DFT methods but also with some CCSD(T) validation. We have located six minima: two doubly trans (26, 27), one triply trans (28), one singly trans (29), one quintuply trans (trannulene-type, 33), and one all-cis (31). The first three are aromatic, 33 is modestly aromatic, 29 is nonaromatic, and the last is a M?bius antiaromatic species. We also investigated the fusion of various numbers of three-membered rings (3MRs) to the central 11-membered ring (11MR). We found several planar, all-cis-[11]annulenium ion derivatives as well as another M?bius antiaromatic species (52b); for comparison, we also found planar, antiaromatic all-cis-[12]annulene (60) and [15]annulenium cation (61) derivatives. The (anti)aromatic characterization of these compounds is based mainly on calculated magnetic data for the ground singlet and vertical triplet states, although aromatic stabilization energies (ASE) are also considered. Data for optimized triplets, several of which are M?bius aromatic systems (31t, 52t, 63t, 64t), are also included. Several of these cations are reasonable synthetic targets.  相似文献   

8.
A new fused core‐modified 32π heptaphyrin with Möbius aromatic character is reported. The 1H NMR data indicated a weak Möbius aromaticity at 298 K; however, at 213–183 K, the molecule predominates [4n]π Möbius conformation with strong diatropic ring current, which was further confirmed by X‐ray analysis. The protonation experiment led to preservation of the Möbius aromaticity at 298 K. Nevertheless, the experimental results were further supported by theoretical studies. Overall, this study represents the first example of Möbius aromatic fused core‐modified expanded porphyrin.  相似文献   

9.
Rzepa HS 《Organic letters》2008,10(5):949-952
Two reported [26] and [28]hexaphyrins are analyzed via measured and computed geometries and NMR-shieldings as examples of respectively 4n + 2 pi-electron aromatic and 4n pi-electron antiaromatic double-twist M?bius ring systems, adopting a lemniscular/figure-eight topology with linking number LK = 2pi. Values of local twist (TW) and nonlocal writhe (WR) derived from the relation Lk = Tw + WR appear relatively insensitive to the aromatic/antiaromatic character. The [26]hexaphyrin may adopt differing solution and solid-state conformations.  相似文献   

10.
Reductive metalation of [44]decaphyrin with [Pd2(dba)3] provided a Hückel aromatic [46]decaphyrin PdII complex, which was readily oxidized upon treatment with DDQ to produce a Hückel antiaromatic [44]decaphyrin PdII complex. In CH2Cl2 solution the latter complex underwent slow tautomerization to a Möbius aromatic [44]decaphyrin PdII complex which exists as a mixture of conformers in dynamic equilibrium. To the best of our knowledge, these three PdII complexes represent the largest Hückel aromatic, Hückel antiaromatic, and Möbius aromatic complexes to date.  相似文献   

11.
Reductive metalation of [44]decaphyrin with [Pd2(dba)3] provided a Hückel aromatic [46]decaphyrin PdII complex, which was readily oxidized upon treatment with DDQ to produce a Hückel antiaromatic [44]decaphyrin PdII complex. In CH2Cl2 solution the latter complex underwent slow tautomerization to a Möbius aromatic [44]decaphyrin PdII complex which exists as a mixture of conformers in dynamic equilibrium. To the best of our knowledge, these three PdII complexes represent the largest Hückel aromatic, Hückel antiaromatic, and Möbius aromatic complexes to date.  相似文献   

12.
Protonation of meso‐aryl [28]hexaphyrins(1.1.1.1.1.1) triggered conformational changes. Whereas protonation with trifluoroacetic acid led to the formation of monoprotonated Möbius aromatic species, protonation with methanesulfonic acid led to the formation of diprotonated triangular antiaromatic species. A peripherally hexaphenylated [28]hexaphyrin was rationally designed and prepared to undergo diprotonation to favorably afford a triangular‐shaped antiaromatic species.  相似文献   

13.
Rzepa HS 《Organic letters》2005,7(21):4637-4639
[structure: see text] B3LYP and KMLYP/6-31G(d) calculations predict a double-helical and chiral conformation of [14]annulene with the topological properties of a double-twist M?bius band as highly aromatic; its energy with respect to the known Hückel-aromatic conformation is predicted to be stabilized by suitable ring substitution.  相似文献   

14.
Density functional and coupled cluster calculations show that facile thermal configuration change in [12]annulene occurs via a twist-coupled bond-shifting mechanism. The transition state for this process is highly aromatic with M?bius topology. At the CCSD(T)/cc-pVDZ//BH&HLYP/6-311+G** level, the isomerization of tri-trans-[12]annulene 1a (CTCTCT) to its di-trans isomer 2 (CCCTCT) via such a mechanism has a barrier of 18.0 kcal/mol, in good agreement with earlier experiments. Two other aromatic M?bius bond-shifting transition states were located that result in configuration change for other [12]annulene conformers. This mechanism contrasts sharply with diradical configuration change for acyclic polyenes and with planar bond-shifting mechanisms generally assumed for annulenes. This constitutes evidence that neutral M?bius aromatic annulenes play a role in the dynamic processes of neutral [4n]annulenes.  相似文献   

15.
We have investigated the aromaticity of singly twisted Möbius aromatic and doubly twisted Hückel antiaromatic bis(palladium(II)) [36]octaphyrins in the lowest triplet state (T1) by spectroscopic measurements and quantum calculations. The T1 state of the singly twisted Möbius [36]octaphyrin shows broad and weak absorption spectral features that are analogous to those of antiaromatic expanded porphyrins while the T1 state of the doubly twisted Hückel [36]octaphyrin exhibits intense and distinct spectral features, indicating the aromatic nature. These results along with theoretical calculations support the hypothesis that the aromaticity is reversed in the T1 state. Furthermore, we show that the degree of structural smoothness affects the aromaticity reversal in the T1 state.  相似文献   

16.
The reaction of [26]hexaphyrin with triethylamine in the presence of BF3?OEt2 and O2 furnished a diastereomeric mixture of a diethylamine‐bearing [28]hexaphyrin as a rare example of a Möbius aromatic metal‐free expanded porphyrin. The Möbius aromaticity of these molecules is large, as indicated by their large diatropic ring currents, which are even preserved at 100 °C, owing to their internally multiply bridged robust structure with a smooth conjugation network. These molecules were reduced with NaBH4 to give an antiaromatic [28]hexaphyrin, and were oxidized with MnO2 to give aromatic [26]hexaphyrins, both through a Möbius‐to‐Hückel topology switch induced by a C? N bond cleavage.  相似文献   

17.
Density functional and ab initio methods have been used to study the mechanisms for key dynamic processes of the experimentally known S4-symmetric [16]annulene (1a). Using BH&HLYP/6-311+G** and B3LYP/6-311+G**, we located two viable stepwise pathways with computed energy barriers (Ea = 8-10 kcal/mol) for conformational automerization of 1a, in agreement with experimental data. The transition states connecting these conformational minima have M?bius topology and serve as starting points for non-degenerate pi-bond shifting (configuration change) via M?bius aromatic transition states. The key transition state, TS1-2, that connects the two isomers of [16]annulene (CTCTCTCT, 1 --> CTCTTCTT, 2) has an energy, relative to the S4 isomer, that ranged from 6.9 kcal/mol (B3LYP/6-311+G**) to 16.7 kcal/mol (BH&HLYP/6-311+G**), bracketing the experimental barrier. At our best level of theory, CCSD(T)/cc-pVDZ(est), this barrier is 13.7 kcal/mol. Several other M?bius bond-shifting transition states, as well as M?bius topology conformational minima, were found with BH&HLYP energies within 22 kcal/mol of 1a, indicating that many possibilities exist for facile thermal configuration change in [16]annulene. This bond-shifting mechanism and the corresponding low barriers contrast sharply with those observed for cis/trans isomerization in acyclic polyenes, which occurs via singlet diradical transition states. All M?bius bond-shifting transition states located in [16]- and [12]annulene were found to have RHF --> UHF instabilities with the BH&HLYP method but not with B3LYP. This result appears to be an artifact of the BH&HLYP method. These findings support the idea that facile thermal configuration change in [4n]annulenes can be accounted for by mechanisms involving twist-coupled bond shifting.  相似文献   

18.
A series of meso-trifluoromethyl-substituted expanded porphyrins, including N-fused [24]pentaphyrin 3, [28]hexaphyrin 4, [32]heptaphyrin 5, [46]decaphyrin 6, and [56]dodecaphyrin 7, were synthesized by means of an acid-catalyzed one-pot condensation reaction of 2-(2,2,2-trifluoro-1-hydroxyethyl)pyrrole (1) as the first examples bearing meso-alkyl substituents. Besides these products, porphyrin 2 and two calix[5]phyrins 8 and 9 were also obtained. [28]Hexaphyrin 4 was quantitatively oxidized to [26]hexaphyrin 14 with MnO(2). These expanded porphyrins have been characterized by mass spectrometry, (1)H and (19)F NMR spectroscopy, and UV/Vis spectroscopy. The single-crystal structures have been determined for 3, 4, 6, 7, and 14. The N-fused [24]pentaphyrin 3 displays a distorted structure containing a tricyclic fused moiety that is similar to those of meso-aryl-substituted counterparts, whereas 8 and 9 are indicated to take roughly planar conformations with an inverted pyrrole opposite to the sp(3)-hybridized meso-carbon atom. Both [28]- and [26]hexaphyrins 4 and 14 have figure-of-eight structures. Solid-state structures of the decaphyrin 6 and dodecaphyrin 7 are remarkable, exhibiting a crescent conformation and an intramolecular two-pitch helical conformation, respectively.  相似文献   

19.
meso-Aryl-substituted expanded porphyrins that are porphyrin homologues consisting of more than five pyrrolic units are a nice platform to realize diverse aromatic and antiaromatic species as well as stable radical species. They are also an ideal series to realize topologically twisted molecules with distinct M?bius aromaticity and antiaromaticity.  相似文献   

20.
The structure, spectroscopy, and photochemistry of N,N'-dimethyl-N,N'-di-1-naphthylurea have been investigated and compared to the properties of the corresponding secondary diarylurea N,N'-di-1-naphthylurea and the tertiary mono arylurea N,N,N'-trimethyl-N'-1-naphthylurea. The crystal structures and solution NMR spectra of the tertiary and secondary dinaphthylureas establish that they adopt folded (E,E) and extended (Z,Z) structures, respectively, both in the solid state and in solution. In solution, the tertiary E,E-dinaphthylurea exists as a mixture of syn and anti conformations separated by a barrier of ca. 14 kcal/mol, as determined by variable-temperature (1)H NMR spectroscopy. Computational exploration of the ground-state potential energy surface suggests that the lowest energy pathway for interconversion of the syn and anti conformers requires concurrent rotation about both the nitrogen-naphthalene and the nitrogen-carbonyl single bonds. The tertiary dinaphthylurea exhibits blue-shifted absorption and red-shifted emission attributed to excitonic interactions between the naphthalene rings. The secondary dinaphthylureas and mono naphthylurea have typical naphthalene-like monomer absorption and fluorescence spectra. Dual exponential fluorescence decay is assigned to the two conformers of the tertiary dinaphthylurea. Nonlinear fitting of the fluorescence decay times provides activation parameters for singlet decay of the two conformers. The decay process is attributed to nonsynchronous naphthalene-naphthalene bonding which, in the case of the syn conformer, results in the formation of a [2+2] intramolecular adduct. The preferred E,E conformation and moderate barrier to conformational isomerization make the tertiary dinaphthylurea an attractive building block for larger self-organizing pi-stacked aromatic arrays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号