首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
Platinum nanoparticles supported on Al-MCM-48 materials have been prepared. The resultant catalysts have been characterized by means of XRD, N2 physisorption experiments, scanning electron microscopy (SEM), transmission electron microscopy (TEM), temperature-programmed reduction (TPR), and diffuse reflectance infrared Fourier-transform spectroscopy (DRIFTS). The activity of these nanoparticles has been tested in relation to the hydroisomerisation of n-octane. The catalytic activities were typically 50 %, with selectivities in the isomerisation process in excess of 70 %, favouring the formation of the 3-methylheptane isomer with respect to the 2- and 4-methylheptanes.  相似文献   

11.
12.
13.
La0.3(Ba0.5Sr0.5)0.7Co0.8Fe0.2O3?δ is a promising bifunctional perovskite catalyst for the oxygen reduction reaction and the oxygen evolution reaction. This catalyst has circa 10 nm‐scale rhombohedral LaCoO3 cobaltite particles distributed on the surface. The dynamic microstructure phenomena are attributed to the charge imbalance from the replacement of A‐site cations with La3+ and local stress on Co‐site sub‐lattice with the cubic perovskite structure.  相似文献   

14.
Increasing energy demands have stimulated intense research activities on reversible electrochemical conversion and storage systems with high efficiency, low cost, and environmental benignity. It is highly challenging but desirable to develop efficient bifunctional catalysts for both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). A universal and facile method for the development of bifunctional electrocatalysts with outstanding electrocatalytic activity for both the ORR and OER in alkaline medium is reported. A mixture of Pt/C catalyst with superior ORR activity and a perovskite oxide based catalyst with outstanding OER activity was employed in appropriate ratios, and prepared by simple ultrasonic mixing. Nanosized platinum particles with a wide range of platinum to oxide mass ratios was realized easily in this way. The as‐formed Pt/C–oxide composites showed better ORR activity than a single Pt/C catalyst and better OER activity than a single oxide to bring about much improved bifunctionality (ΔE is only ≈0.8 V for Pt/C–BSCF; BSCF=Ba0.5Sr0.5Co0.8Fe0.2O3?δ), due to the synergistic effect. The electronic transfer mechanism and the rate‐determining step and spillover mechanism were two possible origins of such a synergistic effect. Additionally, the phenomenon was found to be universal, although the best performance could be reached at different platinum to oxide mass ratios for different oxide catalysts. This work thus provides an innovative strategy for the development of new bifunctional electrocatalysts with wide application potentials in high‐energy and efficient electrochemical energy storage and conversion.  相似文献   

15.
The adsorption behavior of O-methyl and O-trimethylsilyl derivatives of cinchonidine (CD), employed as chiral modifiers for heterogeneous enantioselective hydrogenations on supported Pt catalysts, has been investigated by using attenuated total reflection infrared spectroscopy (ATR-IR) and density functional theory (DFT) electronic structure calculations. The ATR-IR spectroscopic investigation provided detailed insight of the adsorbed modifiers under conditions close to those employed during catalytic processes, and electronic structure calculations were used as a complement to the experiments to uncover the implications of conformational changes in generating the topology of the surface chiral site. The structural investigation of the adsorbed modifiers revealed a relationship between the spatial positions of the ether substituents and the enantiodifferentiation induced by the modified catalyst observed in the hydrogenation of alpha-activated ketones. Experiments and calculations corroborate a model, according to which the addition of a bulky ether group to CD reshapes the chiral sites, thus generating catalytic chiral surfaces with different and, in some cases (e.g. hydrogenation of ketopantolactone), even opposite enantioselective properties to those obtained with CD without altering the absolute configuration of the modifier. The study also confirms that active surface conformations of cinchona modifiers are markedly different from those existing in vacuum and in solution, thus underlying the necessity of investigating the surface-modifier interaction in order to understand enantioselectivity.  相似文献   

16.
17.
Metal oxide nanomaterials directly grown on conductive substrates are optimal electrode materials because their structures allow for rapid ion and electron transport and thereby reduce internal resistance in the electrode. The development of such binder-free, self-supporting electrodes is of great significance for applications in electrocatalysis. In this work, a simple hydrothermal in situ self-assembly reaction and annealing process was developed to prepare three kinds of nickel oxide @ carbon felt (NiO@CF) nanocomposites with different morphologies. The influence of different precipitators (strong or weak bases) on the morphology of the resulting nano-sized nickel oxide nanocomposites was investigated. The microstructures of the NiO@CF samples were characterized with field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). When ammonia was used as the precipitator, NiO grew vertically on the surface of the carbon felt and formed a mesoporous nanosheet-like structure (NiO NSs@CF). As an electrocatalytic nitrogen reduction reaction (e-NRR) electrode, the NiO NSs@CF sample showed an excellent NH3 yield (71.3 μg h−1 mg−1cat.) and Faradaic efficiency (17.9 % at −0.5 V vs. RHE) in 0.1 M Na2SO4. The good performance was attributed to the vertical interleaved mesoporous sheet-like structure (with the pore size of 15 nm and the thickness of ∼30 nm) and the relatively high concentration of oxygen vacancies. First-principles calculations with strong on-site Coulomb interactions demonstrated that the presence of oxygen vacancy on NiO sample leads to a significantly stronger N binding over the surface, benefiting for the nitrogen gas adsorption and reduction. The e-NRR performance of this binder-free, flexible electrode material is superior to that of other reported nickel-based nanomaterials. This study highlights the potential of such binder-free carbon felt electrodes for use in e-NRR that could meet the needs of industrial production.  相似文献   

18.
The effect of the Pt shell thickness on the oxygen reduction reaction (ORR) of a Pd@Pt core-shell catalyst was studied using surface science technics and computational approaches. We found Pt shells on Pd rods to be negatively charged because of charge transfer from the Pd substrate when the shell thicknesses were 0.5 or 1 monolayer (ML). The activities of the ORR of the model surface with a Pt shell of 0.5 or 1 ML were similar and more than twice the activities of a Pt/C or Pt rod. The relationship between the ORR activity and the thickness of the Pt shell was the exact opposite of the relationship between the Pt binding energy and the Pt shell thickness. The indication was that more negatively charged Pt had higher ORR activity. Density functional theory calculations confirmed that a single layer of Pt atoms located on Pd was negatively charged compared to pure Pt and resulted in a lower barrier to the rate-limiting step of the ORR.  相似文献   

19.
The platinum-catalyzed allylation of amines with allyl alcohols was studied experimentally and theoretically. The complexes [Pt(eta(3)-allyl)(dppe)]OTf (2) and [Pt(eta(3)-allyl)(DPP-Xantphos)]PF(6) (5) were synthesized and structurally characterized, and their reactivity toward amines was explored. The bicyclic aminopropyl complex [Pt(CH(2)CH(2)CH(2)NHBn-kappa-C,N)(dppe)]OTf (3) was obtained from the reaction of complex 2 with an excess of benzylamine, and this complex was shown to be a deactivated form of catalyst 2. On the other hand, reaction of complex 5 with benzylamine and allyl alcohol led to formation of the 16-VE platinum(0) complex [Pt(eta(2)-C(3)H(5)OH)(DPP-Xantphos)] (7), which was structurally characterized and appears to be a catalytic intermediate. A DFT study showed that the mechanism of the platinum-catalyzed allylation of amines with allyl alcohols differs from the palladium-catalyzed process, since it involves an associative ligand-exchange step involving formation of a tetracoordinate 18-VE complex. This DFT study also revealed that ligands with large bite angles disfavor the formation of platinum hydride complexes and therefore the formation of a bicyclic aminopropyl complex, which is a thermodynamic sink. Finally, a combination of 5 and a proton source was shown to efficiently catalyze the allylation of a broad variety of amines with allyl alcohols under mild conditions.  相似文献   

20.
为提高PtCo/C合金催化剂的电化学性能,采用微波法合成铂钴锰催化剂前驱体,经高温热处理形成合金,最后通过酸处理得到铂钴锰合金催化剂(PtCoMn/C)。电化学测试结果表明:适量锰的添加可提升PtCo/C催化剂的活性和耐久性。PtCo Mn/C催化剂在0.9 V(vs RHE)电压下的质量比活性(MA)达到0.666 A·mgPt-1,是传统Pt/C的2.66倍,是PtCo/C催化剂的1.30倍。在30 000圈催化剂加速耐久性测试中,PtCoMn/C合金催化剂的电化学活性面积(ECSA)和质量比活性(MA)仅下降6.9%和27.1%,均远低于Pt/C催化剂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号