首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 166 毫秒
1.
Human noroviruses recognize histo blood group antigens (HBGAs) as cellular attachment factors. Recently, it has been discovered that norovirus infection can be significantly enhanced by HBGA binding. Yet the attachment process and how it promotes host‐cell entry is only poorly understood. The binding of a norovirus protruding (P) domain of a predominant GII.4 Saga strain to HBGAs at atomic resolution was studied. So far, independent and equivalent multiple binding sites were held responsible for attachment. Using NMR experiments we show that norovirus‐HBGA binding is a cooperative multi‐step process, and native mass spectrometry reveals four instead of two HBGA binding sites per P‐dimer. An accompanying crystallographic study has disclosed four instead of two L ‐fucose binding sites per P‐dimer of a related GII.10 strain 1 further supporting our findings. We have uncovered a novel paradigm for norovirus‐HBGA recognition that will inspire further studies into norovirus–host interactions.  相似文献   

2.
3.
As part of ongoing activities toward the design of potent and selective ligands against galactoside-binding proteins from animal, bacterial, and plant lectins, a systematic investigation involving the synthesis and binding evaluations of a series of original β-C-galactopyranoside mimetics is described. The multivalent presentation of partly optimized candidates on various dendritic scaffolds through Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAc) has also been achieved. Biophysical investigations based on isothermal titration calorimetry (ITC) have indicated a dissociation constant in the low micromolar range for the best optimized monovalent conjugate (K(d)=37 μM). The results thus confirmed that stable C-galactosides could represent efficient synthetic glycomimetics of natural α-linked oligosaccharidic inhibitors of PA-IL lectin (Lec A) from the pathogenic Pseudomonas aeruginosa. Striking enhancements in the avidity of the glycoconjugates were also observed for tri-, hexa-, and nonavalent derivatives, among which the most potent exhibited dissociation constants below 500 nM, corresponding to a 400-fold increase in affinity compared with the β-D-Gal-O-Me used as reference. To deepen our understanding of the binding mode of the best glycomimetics involved in the recognition process, molecular modeling studies, docking calculations, and NMR diffusion measurements have been performed. Although favorable complementary interactions induced by the addition of the hydrophobic aglycon might explain the affinity enhancement, experimental determination of the size and the topology of the multivalent conjugates further supported the formation of aggregative complexes as a major multivalent binding mode. This work represents a systematic and comprehensive study towards a thorough understanding of the protein-carbohydrate interactions involved in Pseudomonas aeruginosa infection, and as such should prove useful for the development of stable and optimized anti-adhesive agents.  相似文献   

4.
The synthesis of unprecedented multimeric Kdo glycoclusters based on fullerene and calix[4]arene central scaffolds is reported. The compounds were used to study the mechanism and scope of multivalent glycosyltransferase inhibition. Multimeric mannosides based on porphyrin and pillar[5]arenes were also generated in a controlled manner. Twelve glycoclusters and their monomeric ligands were thus assayed against heptosyltransferase WaaC, which is an important bacterial glycosyltransferase that is involved in lipopolysaccharide biosynthesis. It was first found that all the multimers interact solely with the acceptor binding site of the enzyme even when the multimeric ligands mimic the heptose donor. Second, the novel Kdo glycofullerenes displayed very potent inhibition (Ki=0.14 μm for the best inhibitor); an inhibition level rarely observed with glycosyltransferases. Although the observed “multivalent effects” (i.e., the enhancement of affinity of a ligand when presented in a multimeric fashion) were in general modest, a dramatic effect of the central scaffold on the inhibition level was evidenced: the fullerene and the porphyrin scaffolds being by far superior to the calix‐ and pillar‐arenes. We could also show, by dynamic light scattering analysis, that the best inhibitor had the propensity to form aggregates with the heptosyltransferase. This aggregative property may contribute to the global multivalent enzyme inhibition, but probably do not constitute the main origin of inhibition.  相似文献   

5.
Noroviruses (NoVs), the major cause of epidemic acute gastroenteritis, recognize human histo-blood group antigens (HBGAs), which are present as free oligosaccharides in bodily fluid or glycolipids and glycoproteins on the surfaces of cells. The subviral P particle formed by the protruding (P) domain of the NoV capsid protein serves as a useful model for the study NoV–HBGA interactions. Here, we demonstrate the application of a catch-and-release electrospray ionization mass spectrometry (CaR-ESI-MS) assay for screening carbohydrate libraries against the P particle to rapidly identify NoV ligands and potential inhibitors. Carbohydrate libraries of 50 and 146 compounds, which included 18 and 24 analogs of HBGA receptors, respectively, were screened against the P particle of VA387, a member of the predominant GII.4 NoVs. Deprotonated ions corresponding to the P particle bound to carbohydrates were isolated and subjected to collision-induced dissociation to release the ligands in their deprotonated forms. The released ligands were identified by ion mobility separation followed by mass analysis. All 13 and 16 HBGA ligands with intrinsic affinities >500 M–1 were identified in the 50 and the 146 compound libraries, respectively. Furthermore, screening revealed interactions with a series of oligosaccharides with structures found in the cell wall of mycobacteria and human milk. The affinities of these newly discovered ligands are comparable to those of the HBGA receptors, as estimated from the relative abundance of released ligand ions.   相似文献   

6.
Structure‐based design (SBD) can be used for the design and/or optimization of new inhibitors for a biological target. Whereas de novo SBD is rarely used, most reports on SBD are dealing with the optimization of an initial hit. Dynamic combinatorial chemistry (DCC) has emerged as a powerful strategy to identify bioactive ligands given that it enables the target to direct the synthesis of its strongest binder. We have designed a library of potential inhibitors (acylhydrazones) generated from five aldehydes and five hydrazides and used DCC to identify the best binder(s). After addition of the aspartic protease endothiapepsin, we characterized the protein‐bound library member(s) by saturation‐transfer difference NMR spectroscopy. Cocrystallization experiments validated the predicted binding mode of the two most potent inhibitors, thus demonstrating that the combination of de novo SBD and DCC constitutes an efficient starting point for hit identification and optimization.  相似文献   

7.
Much effort has been made during the last decade to design lectin inhibitors as therapeutics against viral and bacterial adhesion or to control biological functions. The chemical strategy adopted generally consists in the tethering of several binding epitopes on a common scaffold. The resulting multivalent glycoconjugates often display a much higher binding affinity for their targets compared to their monovalent counterparts, a phenomenon designed as the "cluster" or "multivalent effect". Hundreds of multimeric architectures have been designed so far and some of the compounds displayed impressive gains in binding affinity or in vivo efficiency. Progress in this area is, however, hampered by the difficulty to predict the potency of the new multimeric inhibitors. This review presents the recent efforts to probe the important structural features of the synthetic multivalent glycoconjugates for a tight binding with specific lectins. We hope that the reported examples will aid the reader to design efficient multivalent ligands in a more predictable way.  相似文献   

8.
A new triazatruxene‐based fluorescent glycocluster has been designed, synthesized, and fully characterized by NMR spectroscopy and mass spectrometry. Furthermore, its specific and selective binding properties with concanavalin A (Con A) have been investigated by fluorescence spectroscopy, circular dichroism (CD) spectroscopy, and turbidity assay. The obtained results showed that the multivalent mannose‐modified triazatruxene exhibited specific binding with Con A, but no binding to peanut agglutinin (PNA) lectin or bovine serum albumin (BSA), corresponding to a two‐orders‐of‐magnitude higher affinity than that of monovalent mannose ligands. Most interestingly, a fluorescence enhancement of the triazatruxene‐based glycocluster was observed upon binding with Con A because of hydrophobic interactions involving sites close to the triazatruxene moiety. Furthermore, the inhibitory ability of the triazatruxene‐based glycocluster against ORN178‐ induced haemagglutination has been investigated by haemagglutination inhibition assay. The results indicated selective binding with ORN178.  相似文献   

9.
In an effort to identify promising non-hydroxamate inhibitors of matrix metalloproteinases (MMPs), several new zinc-binding groups (ZBGs) based on pyrone, pyrothione, hydroxypyridinone, and hydroxypyridinethione chelators have been examined. Structural studies with tris(pyrazolyl)borate model complexes show that these ligands bind to the MMP active site zinc(II) ion in a bidentate fashion, similar to that found with hydroxamate-based inhibitors. Fluorescence- and colorimetric-based enzyme assays have been used to determine the IC50 values for these ZBGs against MMP-3; mixed O,S-donor ligands were found to be remarkably potent, with IC50 values as much as 700-fold lower than that found for acetohydroxamic acid. Inhibitory activity was found to parallel metal binding affinity as determined in titrations with model complexes. These results demonstrate that MPIs based on new ZBGs are feasible and may indeed improve the overall performance of inhibitors designed against these important medicinal targets.  相似文献   

10.
Receptor clustering by multivalent ligands can activate signaling pathways. In principle, multivalent ligand features can control clustering and the downstream signals that result, but the influence of ligand structure on these processes is incompletely understood. Using a series of synthetic polymers that vary systematically, we studied the influence of multivalent ligand binding epitope density on the clustering of a model receptor, concanavalin A (Con A). We analyze three aspects of receptor clustering: the stoichiometry of the complex, rate of cluster formation, and receptor proximity. Our experiments reveal that the density of binding sites on a multivalent ligand strongly influences each of these parameters. In general, high binding epitope density results in greater numbers of receptors bound per polymer, faster rates of clustering, and reduced inter-receptor distances. Ligands with low binding epitope density, however, are the most efficient on a binding epitope basis. Our results provide insight into the design of ligands for controlling receptor-receptor interactions and can be used to illuminate mechanisms by which natural multivalent displays function.  相似文献   

11.
We designed a set of multi‐galactosides with valencies ranging from one to seven and different spacer‐arm lengths. The compounds display a high structural homology for a strict assessment of multivalent phenomena. The multimers were first evaluated by an enzyme‐linked lectin assay (ELLA) toward the peanut agglutinin (PNA). The binding affinity was shown to be dependent on the spacer‐arm length, and cluster effects were observed for the galactosides bearing the shortest and the longest linkers. The latter compounds were shown to be much more potent PNA cross‐linkers in a “sandwich assay”. Dynamic light scattering (DLS) experiments also revealed the formation of soluble aggregates between heptavalent derivatives with medium or long linkers and the labeled PNA. ELLA experiments performed with valency‐controlled clusters and labeled lectins are therefore not always devoid from aggregative processes. The precise nature of the multivalent interaction observed by ELLA for the compounds bearing the shortest linkers, which are unable to form PNA aggregates, was further investigated by atomic force microscopy (AFM). The galactosides were grafted onto the tip of a cantilever and the PNA lectin onto a gold surface. Similar unbinding forces were registered when the valency of the ligands was increased, thus showing that the multimers cannot interact more strongly with PNA. Multiple binding events to the PNA were also never observed, thus confirming that a chelate binding mode does not operate with the multivalent galactosides, probably because the linkers are too short. Altogether, these results suggest that the cluster effect that operates in ELLA with the multimers is not related to additional PNA stabilizations and can be ascribed to local concentration effects that favor a dynamic turnover of the tethered galactosides in the PNA binding sites.  相似文献   

12.
The investigation of recognition events between carbohydrates and proteins, especially the understanding of how spatial factors and binding avidity are correlated, remains a great interest for glycobiology. In this context we have investigated by nanogravimetry (QCM-D) and surface plasmon resonance (SPR), the kinetics and thermodynamics of the interaction between concanavalin A (Con A) and various neoglycopeptide ligands of low molecular weight. Regioselectively addressable functionalized templates (RAFT) have been used as scaffolds for the design of multivalent neoglycopeptides bearing thiol or biotin functions for their anchoring on transducer surfaces. Although these multivalent neoglycopeptide ligands cannot span multiple binding sites within the same Con A protein, they have increased activities relative to their monovalent counterpart. Our results emphasize that the multivalent RAFT ligands function by clustering several lectins, which leads to enhanced affinities.  相似文献   

13.
This paper reports dissociation constants and "effective molarities" (M(eff)) for the intramolecular binding of a ligand covalently attached to the surface of a protein by oligo(ethylene glycol) (EG(n)) linkers of different lengths (n = 0, 2, 5, 10, and 20) and compares these experimental values with theoretical estimates from polymer theory. As expected, the value of M(eff) is lowest when the linker is too short (n = 0) to allow the ligand to bind noncovalently at the active site of the protein without strain, is highest when the linker is the optimal length (n = 2) to allow such binding to occur, and decreases monotonically as the length increases past this optimal value (but only by a factor of approximately 8 from n = 2 to n = 20). These experimental results are not compatible with a model in which the single bonds of the linker are completely restricted when the ligand has bound noncovalently to the active site of the protein, but they are quantitatively compatible with a model that treats the linker as a random-coil polymer. Calorimetry revealed that enthalpic interactions between the linker and the protein are not important in determining the thermodynamics of the system. Taken together, these results suggest that the manifestation of the linker in the thermodynamics of binding is exclusively entropic. The values of M(eff) are, theoretically, intrinsic properties of the EG(n) linkers and can be used to predict the avidities of multivalent ligands with these linkers for multivalent proteins. The weak dependence of M(eff) on linker length suggests that multivalent ligands containing flexible linkers that are longer than the spacing between the binding sites of a multivalent protein will be effective in binding, and that the use of flexible linkers with lengths somewhat greater than the optimal distance between binding sites is a justifiable strategy for the design of multivalent ligands.  相似文献   

14.
SAR by MS     
RNAs have recently emerged as an exciting new target for small molecule therapeutics. Conventional HTS discovery strategies measuring disruption of RNAprotein interactions have proven unsuccessful. We describe a ligand-based drug discovery strategy that addresses the inherent difficulties RNA targets. The strategy is based on: 1) using a MS spectrometry (MS)-based assay to measure the affinity of compounds for a target; 2) performing competitive binding experiments and molecular modeling with the motifs to determine the binding site(s) of the ligands; 3) design and synthesis of derivatives of interesting binders to establish the linking sites; 4) identifying the appropriate linker group using MS; 5) fusing motifs into a more complex structure to afford higher affinity compounds. Example of applying this strategy to identify new classes of lead molecules with affinity and specificity for ribosomal RNA targets will be presented.  相似文献   

15.
It is important to characterize drug-albumin binding during drug discovery and lead optimization as strong binding may reduce bioavailability and/or increase the drug's in vivo half-life. Despite knowing about the location of human serum albumin (HSA) drug binding sites and the residues important for binding, less is understood about the binding dynamics between exogenous drugs and endogenous fatty acids. In contrast to highly specific antibody-antigen interactions, the conformational flexibility of albumin allows the protein to adopt multiple conformations of approximately equal energy in order to accommodate a variety of ligands. Nuclear magnetic resonance (NMR) diffusion measurements are a simple way to quantitatively describe ligand-protein interactions without prior knowledge of the number of binding sites or the binding stoichiometry. This method can also provide information about ligand orientation at the binding site due to buildup of exchange-transferred NOE (trNOE) on the diffusion time scale of the experiment. The results of NMR diffusion and NOE experiments reveal multiple binding interactions of HSA with dansylglycine, a drug site II probe, and caprylate, a medium-chain fatty acid that also has primary affinity for HSA's drug site II. Interligand NOE (ilNOE) detected in the diffusion analysis of a protein solution containing both ligands provides insight into the conformations adopted by these ligands while bound in common HSA binding pockets. The results demonstrate the ability of NMR diffusion experiments to identify ternary complex formation and show the potential of this method for characterizing other biologically important ternary structures, such as enzyme-cofactor-inhibitor complexes.  相似文献   

16.
The solution structure of glycosyl amides has been studied by using NMR. A strong preference is displayed by tertiary aromatic glycosyl amides for E-anti structures in contrast with secondary aromatic glycosyl amides where Z-anti structures predominate. The structural diversity displayed by these classes of molecules would seem to be important as the directional properties of the aromatic ring, or groups attached to the aromatic ring, would be determined by choosing to have either a secondary or tertiary amide at the anomeric center and could be considered when designing bioactive molecules with carbohydrate scaffolds. The structural analysis was also carried out for related divalent secondary and tertiary glycosyl amides and these compounds display preferences similar to that of the monovalent compounds. The constrained divalent compounds have potential for promoting formation of clusters that will have restricted structure and thus have potential for novel studies of mechanisms of action of multivalent ligands. Possible applications of such compounds would be as scaffolds for the design and synthesis of ligands that will facilitate protein-protein or other receptor-receptor interactions. The affinity of restricted divalent (or higher order) ligands, designed to bind to proteins that recognize carbohydrates which would facilitate clustering and concomitantly promote protein-protein interactions, may be significantly higher than monovalent counterparts or multivalent ligands without these properties. This may be useful as a new approach in the development of therapeutics based on carbohydrates.  相似文献   

17.
Potent modulators of RNA function can be assembled in cellulo by using the cell as a reaction vessel and a disease‐causing RNA as a catalyst. When designing small molecule effectors of function, a balance between permeability and potency must be struck. Low molecular weight compounds are more permeable whereas higher molecular weight compounds are more potent. The advantages of both types of compounds could be synergized if low molecular weight molecules could be transformed into potent, multivalent ligands by a reaction that is catalyzed by binding to a target in cells expressing a genetic defect. It was shown that this approach is indeed viable in cellulo. Small molecule modules with precisely positioned alkyne and azide moieties bind adjacent internal loops in r(CCUG)exp, the causative agent of myotonic dystrophy type 2 (DM2), and are transformed into oligomeric, potent inhibitors of DM2 RNA dysfunction by a Huisgen 1,3‐dipolar cycloaddition reaction, a variant of click chemistry.  相似文献   

18.
Multivalent protein-carbohydrate interactions are involved in the initial stages of many fundamental biological and pathological processes through lectin-carbohydrate binding. The design of high affinity ligands is therefore necessary to study, inhibit and control the processes governed through carbohydrate recognition by their lectin receptors. Carbohydrate-functionalised gold nanoclusters (glyconanoparticles, GNPs) show promising potential as multivalent tools for studies in fundamental glycobiology research as well as biomedical applications. Here we present the synthesis and characterisation of galactose functionalised GNPs and their effectiveness as binding partners for PA-IL lectin from Pseudomonas aeruginosa. Interactions were evaluated by hemagglutination inhibition (HIA), surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC) assays. Results show that the gold nanoparticle platform displays a significant cluster glycoside effect for presenting carbohydrate ligands with almost a 3000-fold increase in binding compared with a monovalent reference probe in free solution. The most effective GNP exhibited a dissociation constant (K(d)) of 50 nM per monosaccharide, the most effective ligand of PA-IL measured to date; another demonstration of the potential of glyco-nanotechnology towards multivalent tools and potent anti-adhesives for the prevention of pathogen invasion. The influence of ligand presentation density on their recognition by protein receptors is also demonstrated.  相似文献   

19.
The reported competition STD NMR method combines saturation transfer difference (STD) NMR with competition binding experiments to allow the detection of high-affinity ligands that undergo slow chemical exchange on the NMR time-scale. With this technique, the presence of a competing high-affinity ligand in the compound mixture can be detected by the disappearance or reduction of the STD signals of a low-affinity indicator ligand. This is demonstrated on a BACE1 (beta-site amyloid precursor protein cleaving enzyme 1) protein-inhibitor system. This method can also be used to derive an approximate value, or a lower limit, for the dissociation constant of the potential ligand based on the reduction of the signal intensity of the STD indicator, which is illustrated on an HSA (human serum albumin) model system. This leads to important applications of the competition STD NMR method for lead discovery: it can be used (i) for compound library screening against a broad range of drug targets to identify both high- and low-affinity ligands and (ii) to rank order analogs rapidly and derive structure-activity relationships, which are used to optimize these NMR hits into viable drug leads.  相似文献   

20.
Polyphenolic and Terpenoids are potent natural antiparasitic compounds. This study aimed to identify new drug against Leishmania parasites, leishmaniasis’s causal agent. A new in silico analysis was accomplished using molecular docking, with the Autodock vina program, to find the binding affinity of two important phytochemical compounds, Masticadienonic acid and the 3-Methoxycarpachromene, towards the trypanothione reductase as target drugs, responsible for the defense mechanism against oxidative stress and virulence of these parasites. There were exciting and new positive results: the molecular docking results show as elective binding profile for ligands inside the active site of this crucial enzyme. The ADMET study suggests that the 3-Methoxycarpachromene has the highest probability of human intestinal absorption. Through this work, 3-Methoxycarpachromene and Masticadienonic acid are shown to be potentially significant in drug discovery, especially in treating leishmaniasis. Hence, drug development should be completed with promising results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号