首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The layer-by-layer processing of Au/Au(x)Pd(1-x) core/alloy nanoparticles via microwave irradiation (MWI) based hydrothermal heating is described. Alloy shell growth was monitored by the attenuation of surface plasmon resonance (SPR) as a function of shell thickness and composition. Discrete dipole approximation (DDA) correlated the SPR to particle morphology.  相似文献   

2.
The galvanic replacement reaction between silver and chloroauric acid has been exploited as a powerful means for preparing metal nanostructures with hollow interiors. Here, the utility of this approach is further extended to produce complex core/shell nanostructures made of metals by combining the replacement reaction with electroless deposition of silver. We have fabricated nanorattles consisting of Au/Ag alloy cores and Au/Ag alloy shells by starting with Au/Ag alloy colloids as the initial template. We have also prepared multiple-walled nanoshells/nanotubes (or nanoscale Matrioshka) with a variety of shapes, compositions, and structures by controlling the morphology of the template and the precursor salt used in each step of the replacement reaction. There are a number of interesting optical features associated with these new core/shell metal nanostructures. For example, nanorattles made of Au/Ag alloys displayed two well-separated extinction peaks, a feature similar to that of gold or silver nanorods. The peak at approximately 510 nm could be attributed to the Au/Ag alloy cores, while the other peak was associated with the Au/Ag alloy shells and could be continuously tuned in the spectral range from red to near-infrared.  相似文献   

3.
A Pd‐Au alloy efficiently catalyzed the [2+2+2] cycloaddition of substituted alkynes. Whereas monometallic Pd and Au catalysts were totally ineffective, Pd‐Au alloy nanoparticle catalysts with a low Pd/Au molar ratio showed high activity to give the corresponding polysubstituted arenes in high yields. A variety of substituted alkynes participated in various modes of cycloaddition under Pd‐Au alloy catalysis. The Pd‐Au alloy catalysts exhibited high air tolerance and reusability.  相似文献   

4.
Silver‐Gold alloy/diamond like carbon (Ag‐Au/DLC) nanocomposite films were prepared by co‐deposition of RF‐sputtering and RF‐PECVD on glass substrates by using acetylene gas and silver‐gold target. The deposition process was carried out at room temperature in one minute with the variable parameters of initial pressures and RF powers. X‐ray diffraction analysis demonstrated the formation of Ag/Au alloy nanoparticles with a face‐centered cubic (FCC) structure. Localized surface plasmon and optical properties of Ag‐Au alloy nanoparticles were studied by UV‐visible spectrophotometry which showed that increasing RF power and initial pressure cause a redshift in all samples. Moreover, the effect of RF power and initial pressure on the size and shape of nanoparticles were studied by 2D Atomic force microscopy images. Energy dispersive X‐ray spectroscopy revealed the formation of Ag‐Au/DLC nanoparticles and the percentages of C, Ag, Au and O in all samples. The applied method for Ag/Au alloy preparation is the one step and low‐cost method which makes the samples ready for sensing application.  相似文献   

5.
The surface plasmon resonance (SPR) properties of Au/AuxAg1?x core/alloy nanoparticles (NPs) have been investigated by means of the discrete dipole approximation. The core/alloy microstructure was varied by changing the shell alloy composition x, its thickness tS, and the shell thickness to core radius ratio (tS/rC) in the range of 0.05–1.0. These changes resulted in a novel tuning of SPR shape, frequency, and extinction. These models were compared with experimental results for Au/AuxAg1?x NPs prepared by a microwave‐mediated hydrothermal processing method, which produces core/alloy NPs with SPR signatures closely resembling those of the models.  相似文献   

6.
In this paper, we have demonstrated for the first time, the superb efficiency of aqueous extract of dried leaves of mahogany (Swietenia mahogani JACQ.) in the rapid synthesis of stable monometallic Au and Ag nanoparticles and also Au/Ag bimetallic alloy nanoparticles having spectacular morphologies. Our method was clean, nontoxic and environment friendly. When exposed to aqueous mahogany leaf extract, competitive reduction of Au(III) and Ag(I) ions present simultaneously in same solution leads to the production of bimetallic Au/Ag alloy nanoparticles. UV-visible spectroscopy was used to monitor the kinetics of nanoparticles formation. UV-visible spectroscopic data and TEM images revealed the formation of bimetallic Au/Ag alloy nanoparticles. Mahogany leaf extract contains various polyhydroxy limonoids which are responsible for the reduction of Au(III) and Ag(I) ions leading to the formation and stabilization of Au and Ag nanopaticles.  相似文献   

7.
Pentagonal bipyramid-shaped gold-rich Au/Ag alloy nanoparticles are synthesized in ethylene glycol (EG) in the presence of small amounts of AgNO3 and PVP without using Au seeds. The contents of Au and Ag in pentagonal nanobipyramids are determined by energy-dispersive X-ray spectroscopy (EDS). The EDS data demonstrates that this kind of nanoparticles is composed of Au/Ag alloys, not silver monolayers simply covering the surface of Au nanoparticles. Insights into the growth mechanism of pentagonal bipyramid-shaped gold-rich Au/Ag alloy nanoparticles are discussed.  相似文献   

8.
This article deals with the detection of Co(II) in real water sample using aptamer – reactant platform combination with activated Ag–Au alloy nanoparticles (NPs) by chemiluminescence (CL) method. CL is attributed to a catalytically enhanced decomposition of H2O2 by aptamer conjugated Ag–Au alloy NPs to produce reactive oxygen species. The Ag–Au alloy NPs were prepared by chemical method using double reducing agent (i.e. trisodium citrate and polyethylenimine) and used for detection of Co(II) from water by CL method. CL experiments were carried out with the variation of different parameters such as pH, concentration of luminol, concentration of H2O2 and Ag–Au alloy NPs. We found that Ag–Au alloy NPs have very good efficiency towards Co(II) detection. Analytical parameters and kinetics were studied in detail to know the nature and mechanism of CL in presence of aptamer conjugated Ag–Au alloy NPs. The linear range of the CL sensor of Co(II) is covered concentration from 0.01 to 10 µg/L with detection limit of 0.001 µg/L. The relative standard deviation for determination of Co(II) was 6.65 in 10 replicated measurements. CL method is first time applied to detect the Co(II) in real water samples at very low level using aptamer conjugated Ag–Au NPs as a catalyst.  相似文献   

9.
Au-Cu双金属合金纳米颗粒对包括CO氧化和CO2还原等在内的多个反应有较好的催化活性,然而关于其表面性质的研究却相当匮乏。在此工作中,我们通过对低覆盖度的Au/Cu(111)和Cu/Au(111)双金属薄膜退火,制备出了单原子级分散的Au/Cu(111)和Cu/Au(111)合金化表面,并利用高分辨扫描隧道显微镜(STM)和扫描隧道谱(STS)进一步研究了掺杂原子的电子性质及其对CO吸附行为的影响。研究发现,分散在Cu(111)表面的表层和次表层Au单原子在STM上表现出不同衬度。在-0.5 e V附近,前者表现出相较于Cu(111)明显增强的电子态密度,而后者则明显减弱。吸附实验表明表层Au单原子对CO的吸附能力并没有得到增强,甚至会减弱其周围Cu原子的吸附能力。与Au在Cu(111)表面较好的分散相反,Cu原子倾向于钻入Au(111)的次表层,并且形成多原子聚集体。且Cu原子受Au(111)衬底吸电子作用的影响,其对CO的吸附能力明显减弱。这个研究结果揭示了合金表面的微观结构与性质的关联,为进一步阐明Au-Cu双金属催化剂的表面反应机理提供参考。  相似文献   

10.
In this work, hollow Au/Pt alloy nanoparticles (NPs) with porous surfaces were synthesized in a two-step procedure. In the first step, tri-component Ag/Au/Pt alloy NPs were synthesized through the galvanic replacement reaction between Ag NPs and aqueous solutions containing a mixture of HAuCl4 and H2PtCl4. In the second step, the Ag component was selectively dealloyed with nitric acid (HNO3), resulting in hollow di-component Au/Pt alloy NPs with a porous surface morphology. The atomic ratio of Au to Pt in the NPs was easily tunable by controlling the molar ratio of the precursor solution (HAuCl4 and H2PtCl6). Hollow, porous Au/Pt alloy NPs showed enhanced catalytic activity toward formic acid electrooxidation compared to the analogous pure Pt NPs. This improved activity can be attributable to the suppression of CO poisoning via the “ensemble” effect.  相似文献   

11.
Gold, Au/Ag, Au/Pt and Au/Pd bimetallic nanoparticles with varying mol fractions were synthesized in ethylene glycol and glycerol, using the microwave technique in the presence of a stabilizer poly(N-vinylpyrrolidone) (PVP). It was found that bimetallic colloids of Au/Ag, Au/Pd and Au/Pt form an alloy either on co-reduction of respective metal ions or on mixing individual sols.  相似文献   

12.
A gold–copper alloy with a nominal composition of Cu3Au but with a tetragonal (c = 4a) structure is observed to form at Au/Cu interfaces of gold/copper multilayers deposited on amorphous substrates by d.c. magnetron sputtering. The formation of this non‐equilibrium structure (tentatively D023) under‐ambient conditions is detected by secondary ion mass spectrometry, x‐ray diffraction and high‐resolution cross‐sectional transmission electron microscopy. Co‐sputtering of Au and Cu under similar conditions produces only conventional fcc Cu3Au alloy phases, suggesting that interfacial confinement plays a significant role in producing the novel Cu3Au alloy phase in gold/copper multilayers. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
Bimetallic nanostructures with non-random metal atoms distribution are very important for various applications. To synthesize such structures via benign wet chemistry approach remains challenging. This paper reports a synthesis of a Au/Pd alloy nanostructure through the galvanic replacement reaction between Pd ultrathin nanowires (2.4 +/- 0.2 nm in width, over 30 nm in length) and AuCl3 in toluene. Both morphological and structural changes were monitored during the reaction up to 10 h. Continuous changes of chemical composition and crystalline structure from Pd nanowires to Pd68Au32 and Pd45Au55 alloys, and to Au nanoparticles were observed. More interestingly, by using combined techniques such as high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), energy dispersive X-ray spectrometry (EDS), UV-vis absorption, and extended X-ray absorption fine structure (EXAFS) spectroscopy, we found the formation of Pd68Au32 non-random alloy with Au-rich core and Pd-rich shell, and random Pd45Au55 alloy with uniformly mixed Pd and Au atom inside the nanoparticles, respectively. Density functional theory (DFT) calculations indicated that alkylamine will strongly stabilize Pd to the surface, resulting in diffusion of Au atoms into the core region to form a non-random alloy. We believe such benign synthetic techniques can also enable the large scale preparation of various types of non-random alloys for several technically important catalysis applications.  相似文献   

14.
A uric acid (UA) electrochemical biosensor based on the Cu‐Au alloy nanoparticles (NPs) and uricase was developed. The electrodeposition technique of Cu‐Au alloy NPs was selected to be a convenient potentiostatic method at –0.8 V in a single solution containing both Au(III) and Cu2+. Cyclic voltammetry and scanning electron microscopy proved the successful deposition of Cu‐Au alloy NPs. EIS demonstrated the good conductivity of Cu‐Au alloy NPs. The enzyme was immobilized on the surface of Cu‐Au alloy NPs modified electrode by casting with chitosan solution. The ultimate biosensor showed linear amperometric response towards UA in the concentration range of 3.0 to 26.0 μM with a detection limit of 0.8 μM. The main feature of the biosensor was its short response time, which was attributed to the good conductivity of Cu‐Au alloy NPs. Furthermore, the biosensor could avoid the interference of ascorbic acid and oxygen.  相似文献   

15.
以K2PdCl4/K2Ni(CN)4为前驱体制备了具有凝胶特性的氰胶(Cyanogels), 利用硼氢化钠还原氰胶得到三维多孔珊瑚状PdNi合金前驱体, 在此基础上通过原位Galvanic置换反应, 制备得到内核为PdNi合金、 表面具有不同厚度Au层的三维多孔PdNi@Au催化剂. X射线衍射(XRD)分析和透射电子显微镜(TEM)观测结果显示, 该三维网状结构由粒径约7 nm的纳米颗粒相互连接形成; 能量分散光谱(EDX)线性扫描和元素分布(Mapping)分析显示该催化剂具有典型的核壳结构. 电化学测试结果表明, 表面Au层的厚度影响PdNi@Au催化剂的性能, 当Au的含量(摩尔分数)为5.6%时, 催化剂显示出对甲酸最佳的电催化活性, 对甲酸电催化氧化的峰电流密度达到商业化铂黑催化剂的7.2倍.  相似文献   

16.
Novel Au/Pt and Au/Pt(3)Ni nanostructures consisting of Pt and Pt(3)Ni alloy nanodendrites grown on Au nanowires were synthesized, which exhibited high electrocatalytic activity and durability toward oxygen reduction when used as self-supported catalysts.  相似文献   

17.
合成并比较了碳载Au(Au/C)、碳载Pd(Pd/C)、碳载高合金化Pd-Au(Pd-Au/C-T)和碳载非合金化Pd-Au(Pd-Au/C-H)催化剂对甲酸氧化的电催化活性和稳定性.结果表明,Au/C对甲酸氧化基本没有电催化活性,而Pd/C对甲酸氧化有较好的电催化性能,Au的加入能进一步提高Pd催化剂对甲酸氧化的电催化活性和稳定性,特别是Pd-Au/C-T对甲酸氧化的电催化活性和稳定性要好于Pd-Au/C-H,更远好于Pd/C催化剂.相关反应机理有待进一步揭示.  相似文献   

18.
有关用于各种氧化反应中Au-Ag双金属催化剂存在显著协同效应的来源有两种观点:(1) AgOx块与体相Au表面的接触界面起重要作用,体相Au的表面是催化活性位;(2) Au-Ag双金属催化剂中形成的Au-Ag合金中电荷从Ag转移到Au上,可能对催化剂活性起作用。因此,确定Au表面上Ag是以氧化物还是以金属合金形式存在可能是深度理解该协同效应的关键。
  为了检测和验证催化剂活性的增加是由于Ag2O与Au纳米粒子的紧密接触,在密闭循环反应体系中比较研究了Au/Ag2O和Ag2O催化剂上CO氧化反应。将CO/O2摩尔比为2的混合气通入到这二个催化剂上来跟踪压力降低的速率。因而检测了气体的消耗量和CO2的生成量。结果发现,在稳态下Au/Ag2O和Ag2O催化剂的压力降低的速率不存在差别。这两个催化剂上压力的降低是由于Ag2O中表面晶格氧被混合气中CO的还原所致。 Au/Ag2O催化剂上得到的结果与以前研究的具有氧化表面的Ag掺杂的Au粉末(Ag/Au-b)上的一致,也表明AgOx块与体相Au表面界面周边不大可能是CO氧化反应催化活性位。基于具有稳态表面的Ag/Au-b样品上的研究结果,我们认为AgOx物种被还原为0价态Ag而形成的Ag-Au合金很可能是催化活性位。  相似文献   

19.
Nanoporous gold, a dilute alloy of Ag in Au, activates molecular oxygen and promotes the oxygen‐assisted catalytic coupling of methanol. Because this trace amount of Ag inherent to nanoporous gold has been proposed as the source of oxygen activation, a thin film Ag/Au alloy surface was studied as a model system for probing the origin of this reactivity. Thin alloy layers of AgxAu1?x, with 0.15≤x≤0.40, were examined for dioxygen activation and methanol self‐coupling. These alloy surfaces recombine atomic oxygen at different temperatures depending on the alloy composition. Total conversion of methanol to selective oxidation products, that is, formaldehyde and methyl formate, was achieved at low initial oxygen coverage and at low temperature. Reaction channels for methyl formate formation occurred on both Au and Au/Ag mixed sites with a ratio, as was predicted from the local 2‐dimensional composition.  相似文献   

20.
Cu + Au alloy particles electrodeposited on an amorphous carbon electrode at the underpotential region of Cu in both perchloric acid and sulfuric acid solutions were investigated by means of transmission electron microscopy. The fraction of Cu in the Cu + Au alloy particles grown in both acid solutions with a concentration of 1 mM Au ion increased while the underpotential deposition (UPD) potential was decreased. However, it was independent of the concentration of Cu ion in solution. It is inferred that the composition of the Cu + Au alloy particles is dependent on the UPD potential. The fraction of Cu in the Cu + Au alloy particles grown at around the reversible Nernst potential of Cu in 0.1 mM HAuCl4 + 50 mM Cu(ClO4)2 containing perchloric acid solution was 505. This result suggests a layer-by-layer formation of the Cu + Au alloy particles. The fraction of Cu in the Cu + Au alloy particles formed in the presence of sulfate was lower than that in the perchloric acid solution as the UPD potential and the concentration of Cu ion were the same. This is attributed to an influence of coadsorbed sulfate ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号