首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Molecular dynamics simulations are performed to study the growth mechanism of CH4-CO2 mixed hydrate in xco2 = 75%, xco2 = 50%, and zco2 = 25% systems at T = 250 K, 255 K and 260 K, respectively. Our simulation results show that the growth rate of CH4-CO2 mixed hydrate increases as the CO2 concentration in the initial solution phase increases and the temperature decreases. Via hydrate formation, the composition of CO2 in hydrate phase is higher than that in initial solution phase and the encaging capacity of CO2 in hydrates increases with the decrease in temperature. By analysis of the cage occupancy ratio of CH4 molecules and CO2 molecules in large cages to small cages, we find that CO2 molecules are preferably encaged into the large cages of the hydrate crystal as compared with CH4 molecules. Interestingly, CH4 molecules and CO2 molecules frequently replace with each other in some particular cage sites adjacent to hydrate/solution interface during the crystal growth process. These two species of guest molecules eventually act to stabilize the newly formed hydrates, with CO2 molecules occupying large cages and CH4 molecules occupying small cages in hydrate.  相似文献   

2.
Molecular dynamics simulations are performed to study the growth mechanism of CH4-CO2 mixed hydrate in xCO2= 75%, xCO2= 50%, and xCO2= 25% systems at T = 250 K, 255 K and 260 K, respectively. Our simulation results show that the growth rate of CH4-CO2 mixed hydrate increases as the CO2 concentration in the initial solution phase increases and the temperature decreases. Via hydrate formation, the composition of CO2 in hydrate phase is higher than that in initial solution phase and the encaging capacity of CO2 in hydrates increases with the decrease in temperature. By analysis of the cage occupancy ratio of CH4 molecules and CO2 molecules in large cages to small cages, we find that CO2 molecules are preferably encaged into the large cages of the hydrate crystal as compared with CH4 molecules. Interestingly, CH4 molecules and CO2 molecules frequently replace with each other in some particular cage sites adjacent to hydrate/solution interface during the crystal growth process. These two species of guest molecules eventually act to stabilize the newly formed hydrates, with CO2 molecules occupying large cages and CH4 molecules occupying small cages in hydrate.  相似文献   

3.
Methane storage in structure H (sH) clathrate hydrates is attractive due to the relatively higher stability of sH as compared to structure I methane hydrate. The additional stability is gained without losing a significant amount of gas storage density as happens in the case of structure II (sII) methane clathrate. Our previous work has showed that the selection of a specific large molecule guest substance (LMGS) as the sH hydrate former is critical in obtaining the optimum conditions for crystallization kinetics, hydrate stability, and methane content. In this work, molecular dynamics simulations are employed to provide further insight regarding the dependence of methane occupancy on the type of the LMGS and pressure. Moreover, the preference of methane molecules to occupy the small (5(12)) or medium (4(3)5(6)6(3)) cages and the minimum cage occupancy required to maintain sH clathrate mechanical stability are examined. We found that thermodynamically, methane occupancy depends on pressure but not on the nature of the LMGS. The experimentally observed differences in methane occupancy for different LMGS may be attributed to the differences in crystallization kinetics and/or the nonequilibrium conditions during the formation. It is also predicted that full methane occupancies in both small and medium clathrate cages are preferred at higher pressures but these cages are not fully occupied at lower pressures. It was found that both small and medium cages are equally favored for occupancy by methane guests and at the same methane content, the system suffers a free energy penalty if only one type of cage is occupied. The simulations confirm the instability of the hydrate when the small and medium cages are empty. Hydrate decomposition was observed when less than 40% of the small and medium cages are occupied.  相似文献   

4.
Guest-host hydrogen bonding in clathrate hydrates occurs when in addition to the hydrophilic moiety which causes the molecule to form hydrates under high pressure-low temperature conditions, the guests contain a hydrophilic, hydrogen bonding functional group. In the presence of carbon dioxide, ethanol clathrate hydrate has been synthesized with 10% of large structure I (sI) cages occupied by ethanol. In this work, we use molecular dynamics simulations to study hydrogen bonding structure and dynamics in this binary sI clathrate hydrate in the temperature range of 100-250 K. We observe that ethanol forms long-lived (>500 ps) proton-donating and accepting hydrogen bonds with cage water molecules from both hexagonal and pentagonal faces of the large cages while maintaining the general cage integrity of the sI clathrate hydrate. The presence of the nondipolar CO(2) molecules stabilizes the hydrate phase, despite the strong and prevalent alcohol-water hydrogen bonding. The distortions of the large cages from the ideal form, the radial distribution functions of the guest-host interactions, and the ethanol guest dynamics are characterized in this study. In previous work through dielectric and NMR relaxation time studies, single crystal x-ray diffraction, and molecular dynamics simulations we have observed guest-water hydrogen bonding in structure II and structure H clathrate hydrates. The present work extends the observation of hydrogen bonding to structure I hydrates.  相似文献   

5.
The sequestration of industrially emitted CO(2) in gas hydrate reservoirs has been recently discussed as an option to reduce atmospheric greenhouse gas. This CO(2) contains, despite much effort to clean it, traces of impurities such as SO(2) and NO(2) . Here, we present results of a pilot study on CO(2) hydrates contaminated with 1% SO(2) or 1% NO(2) and show the impact on hydrate formation and stability. Microscopic observations show similar hydrate formation rates, but an increase in hydrate stability in the presence of SO(2). Laser Raman spectroscopy indicates a strong enrichment of SO(2) in the liquid and hydrate phase and its incorporation in both large and small cages of the hydrate lattice. NO(2) is not verifiable by laser Raman spectroscopy, only the presence of nitrate ions could be confirmed. Differential scanning calorimetry analyses show that hydrate stability and dissociation enthalpy of mixed CO(2)-SO(2) hydrates increase, but that only negligible changes arise in the presence of NO(2) impurities. X-ray diffraction data reveal the formation of sI hydrate in all experiments. The conversion rates of ice+gas to hydrate increase in the presence of SO(2), but decrease in the presence of NO(2). After hydrate dissociation, SO(2) and NO(2) dissolved in water and form strong acids.  相似文献   

6.
To investigate the molecular interaction between guest species inside of the small and large cages of methane + propane mixed gas hydrates, thermal stabilities of the methyl radical (possibly induced in small cages) and the normal propyl and isopropyl radicals (induced in large cages) were investigated by means of electron spin resonance measurements. The increase of the total amount of the normal propyl and isopropyl radicals reveals that the methyl radical in the small cage withdraws one hydrogen atom from the propane molecule enclathrated in the adjacent large cage of the structure-II hydrate. A guest species in a hydrate cage has the ability to interact closely with the other one in the adjacent cages. The clathrate hydrate may be utilized as a possible nanoscale reaction field.  相似文献   

7.
The stability of structure H (sH) carbon dioxide clathrate hydrates at three temperature-pressure conditions are determined by molecular dynamics simulations on a 3x3x3 sH unit cell replica. Simulations are performed at 100 K at ambient pressure, 273 K at 100 bars and also 300 K and 5.0 kbars. The small and medium cages of the sH unit cell are occupied by a single carbon dioxide guest and large cage guest occupancies of 1-5 are considered. Radial distribution functions are given for guests in the large cages and unit cell volumes and configurational energies are studied as a function of large cage CO(2) occupancy. Free energy calculations are carried out to determine the stability of clathrates for large cage occupancies at three temperature/pressure conditions stated above. At the low temperature, large cage occupancy of 5 is the most stable while at the higher temperature, the occupancy of 3 is the most favored. Calculations are also performed to show that the CO(2) sH clathrate is more stable than the methane clathrate analog. Implications on CO(2) sequestration by clathrate formation are discussed.  相似文献   

8.
9.
Gas hydrates are crystalline structures comprising a guest molecule surrounded by a water cage, and are particularly relevant due to their natural occurrence in the deep sea and in permafrost areas. Low molecular weight molecules such as methane and carbon dioxide can be sequestered into that cage at suitable temperatures and pressures, facilitating the transition to the solid phase. While the composition and structure of gas hydrates appear to be well understood, their formation and dissociation mechanisms, along with the dynamics and kinetics associated with those processes, remain ambiguous. In order to take advantage of gas hydrates as an energy resource (e.g., methane hydrate), as a sequestration matrix in (for example) CO2 storage, or for chemical energy conservation/storage, a more detailed molecular level understanding of their formation and dissociation processes, as well as the chemical, physical, and biological parameters that affect these processes, is required. Spectroscopic techniques appear to be most suitable for analyzing the structures of gas hydrates (sometimes in situ), thus providing access to such information across the electromagnetic spectrum. A variety of spectroscopic methods are currently used in gas hydrate research to determine the composition, structure, cage occupancy, guest molecule position, and binding/formation/dissociation mechanisms of the hydrate. To date, the most commonly applied techniques are Raman spectroscopy and solid-state nuclear magnetic resonance (NMR) spectroscopy. Diffraction methods such as neutron and X-ray diffraction are used to determine gas hydrate structures, and to study lattice expansions. Furthermore, UV-vis spectroscopic techniques and scanning electron microscopy (SEM) have assisted in structural studies of gas hydrates. Most recently, waveguide-coupled mid-infrared spectroscopy in the 3–20 μm spectral range has demonstrated its value for in situ studies on the formation and dissociation of gas hydrates. This comprehensive review summarizes the importance of spectroscopic analytical techniques to our understanding of the structure and dynamics of gas hydrate systems, and highlights selected examples that illustrate the utility of these individual methods.  相似文献   

10.
Experiments were carried out by reacting H(2) gas with N(2) hydrate at a temperature of 243 K and a pressure of 15 MPa. The characterizations of the reaction products indicated that multiple H(2) molecules can be loaded into both large and small cages of structure II clathrate hydrates. The realization of multiple H(2) occupancy of hydrate cages under moderate conditions not only brings new insights into hydrogen clathrates but also refreshes the perspective of clathrate hydrates as hydrogen storage media.  相似文献   

11.
In this work, the electronic, structural, dynamic andthermodynamic properties of structure II, H and tetragonalAr clathrate hydrates have been calculated and the effectof multiple occupancy on their stability has been examinedusing first-principles and lattice dynamics calculations.The dynamic properties of these clathrates have beeninvestigated depending on the number of guest moleculesin a clathrate cage. It has been found that selectedhydrate structures are dynamically stable. The calculatedcell parameters are in agreement with experimental data.We also report the results of a systematic investigationof cage-like water structures using first-principles calculations. Ithas been observed that Ar clusters can be stabilized indifferent water cages and the stability is strongly dependenton the number of argon atoms inside the cages.  相似文献   

12.
Molecular dynamics simulations were used to determine the influence of a methane-water interface on the position and stability of methane hydrate cages. A potential of mean force was calculated as a function of the separation of a methane hydrate cage and a methane-water interface. The hydrate cages are found to be strongly repelled from the methane gas into the water phase. At low enough temperatures, however, the most favorable location for the hydrate cage is at the interface on the water side. Cage lifetime simulations were performed in bulk water and near a methane-water interface. The methane-water interface increases the cage lifetime by almost a factor of 2 compared to cage lifetimes of cages in bulk water. The potential of mean force and the cage lifetime results give additional explanations for the proposed nucleation of gas hydrates at gas-water interfaces.  相似文献   

13.
Molecular dynamics simulations of the pure structure II tetrahydrofuran clathrate hydrate and binary structure II tetrahydrofuran clathrate hydrate with CO(2), CH(4), H(2)S, and Xe small cage guests are performed to study the effect of the shape, size, and intermolecular forces of the small cages guests on the structure and dynamics of the hydrate. The simulations show that the number and nature of the guest in the small cage affects the probability of hydrogen bonding of the tetrahydrofuran guest with the large cage water molecules. The effect on hydrogen bonding of tetrahydrofuran occurs despite the fact that the guests in the small cage do not themselves form hydrogen bonds with water. These results indicate that nearest neighbour guest-guest interactions (mediated through the water lattice framework) can affect the clathrate structure and stability. The implications of these subtle small guest effects on clathrate hydrate stability are discussed.  相似文献   

14.
在253K和16MPa的压力下,于实验室内合成了氮气水合物,用显微共焦拉曼光谱对其N-N和O-H键伸缩振动的光谱特征进行了研究.结果表明,氮气水合物中的N-N和O—H键的拉曼峰分别为2322.4和3092.1cm^-1,与天然的空气水合物中的数据十分接近.另外,还测定了液氮和溶解于水中的氮分子中N—N键的拉曼峰值,分别为2326.6和2325.0cm^-1.氮气笼型水合物分解的拉曼谱图表明,氮分子同时进入水合物的大笼和小笼中,但由于氮分子在大、小笼中的环境氛围十分接近,其拉曼位移相差不大,故拉曼谱图只能显示N—N键伸缩振动一个峰.  相似文献   

15.
Recent advances in the molecular dynamics simulations of spontaneous nucleation and growth of methane hydrate show that an amorphous phase of the hydrate is first reached. However, the amorphous hydrate has not been well described, due to the insufficient identification of cage structures. Here, we develop a method, called "face-saturated incomplete cage analysis", which can identify all face-saturated cages in a given system. As a result, it is found that thousands of cage types and abundant occupancy states are present in the amorphous hydrate. Moreover, the crystallinity of amorphous hydrate is evaluated according to the quantitative calculation of cage linking structures, and the critical nucleus of hydrate is also estimated on the basis of clustering analysis for all face-saturated cages.  相似文献   

16.
Molecular dynamics (MD) simulations of structure II clathrate hydrates are performed under canonical (NVT) and isobaric–isothermal (NPT) ensembles. The guest molecule as a small help gas is xenon and gases such as cyclopropane, isobutane and propane are used as large hydrocarbon guest molecule (LHGM). The dynamics of structure II clathrate hydrate is considered in two cases: empty small cages and small cages containing xenon. Therefore, the MD results for structure II clathrate hydrates of LHGM and LHGM + Xe are obtained to clarify the effects of guest molecules on host lattice structure. To understand the characteristic configurations of structure II clathrate hydrate the radial distribution functions (RDFs) are calculated for the studied hydrate system. The obtained results indicate the significance of interactions of the guest molecules on stabilizing the hydrate host lattice and these results is consistent with most previous experimental and theoretical investigations.  相似文献   

17.
The structure I clathrate hydrate of carbon monoxide has been studied using dielectric measurements and13C NMR spectroscopy. Broad, weak dielectric absorption curves with maxima at 2.2–3.8 K yieldE a = 0.14 kJ mol–1 for the average Arrhenius activation energy associated with the reorientation of the low polarity guest. Except for H2S this represents the fastest reorienting polar guest known among the clathrate hydrates. The low temperature dielectric absorption curves can best be fitted with a Cole-Davidson asymmetric distribution of relaxation times and activation energies (with = 0.06 at 4 × 106 Hz), which at 107 Hz has been resolved into a double symmetric distribution of discrete relaxation times for CO in the small and large cages. The cross-polarization magic angle spinning13C NMR spectra indicate identical chemical shifts for CO in the small and large cages, in contrast to other hydrates. The static spectra show that the CO molecules undergo anisotropic reorientation in the large cages and that there is still considerable mobility at 77 K. One possible model for the anisotropic motion has the CO rapidly moving among sites over each of the 14 faces of the cage with the CO axis orientated towards the cage centre. The cage occupancy ratio at 220 K, s/ L = 1.11, indicates slightly greater preference of CO for the small cage.Dedicated to Dr D. W. Davidson in honor of his great contributions to the sciences of inclusion phenomena.  相似文献   

18.
By performing a large scale of molecular dynamics simulations, we analyze 60 x 10(6) hydration shells of methane to examine whether the dodecahedral water cluster (DWC) can naturally form in methane aqueous solutions--a fundamental question relevant to the nucleation mechanisms of methane hydrate. The analyzing method is based on identifying the incomplete cages (ICs) from the hydration shells and quantifying their cagelike degrees (zetaC=0-1). Here, the zetaC is calculated according to the H-bond topological network of IC and reflects how the IC resembles the complete polyhedral cage. In this study, we obtain the zetaC distributions of ICs in methane solutions and find the occurrence probabilities of ICs reduce with zetaC very rapidly. The ICs with zetaC>or=0.65 are studied, which can be regarded as the acceptable cagelike structures in appearance. Both increasing the methane concentration and lowering the temperature can increase their occurrence probabilities through slowing down the water molecules. Their shapes, cage-maker numbers, and average radii are also discussed. About 13-14 of these ICs are face saturated, meaning that every edges are shared by two faces. The face-saturated ICs have the potential to act as precursors of hydrate nucleus because they can prevent the encaged methane from directly contacting other dissolved methane when an event of methane aggregation occurs. The complete cages, i.e., the ICs with zetaC=1, form only in the solutions with high methane concentration, and their occurrence probabilities are about 10(-6). Most of their shapes are different from the known hydrate cages, but we indeed observe a standard 5(12)6(2) hydrate cage. We do not find the expected DWC, and its occurrence probability is estimated to be far less than 10(-7). Additionally, the IC analysis proposed in this work is also very useful in other studies not only on the formation, dissociation, and structural transition of hydrates but also on the hydrophobic hydration of apolar solutes.  相似文献   

19.
20.
This study presents the influences of additional guest molecules such as C2H6, C3H8, and CO2 on methane hydrates regarding their thermal behavior. For this purpose, the onset temperatures of decomposition as well as the enthalpies of dissociation were determined for synthesized multicomponent gas hydrates in the range of 173-290 K at atmospheric pressure using a Calvet heat-flow calorimeter. Furthermore, the structures and the compositions of the hydrates were obtained using X-ray diffraction and Raman spectroscopy as well as hydrate prediction program calculations. It is shown that the onset temperature of decomposition of both sI and sII hydrates tends to increase with an increasing number of larger guest molecules than methane occupying the large cavities. The results of the calorimetric measurements also indicate that the molar dissociation enthalpy depends on the guest-to-cavity size ratio and the actual concentration of the guest occupying the large cavities of the hydrate. To our knowledge, this is the first study that observes this behavior using calorimetrical measurements on mixed gas hydrates at these temperature and pressure conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号