首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Combustion instabilities are caused by the interaction of unsteady heat releases and acoustic waves. To mitigate combustion instabilities, perforated liners, typically subjected to a low Mach number bias flow (a cooling flow through perforated holes), are fitted along the bounding walls of a combustor. They dissipate the acoustic waves by generating vorticity at the rims of perforated apertures. To investigate the absorption of plane waves by a perforated liner with bias flow, a time-domain numerical model of a cylindrical lined duct is developed. The liners' damping mechanism is characterized by using a time-domain "compliance." The development of such time-domain compliance is based on simplified or unsimplified Rayleigh conductivity. Numerical simulations of two different configurations of lined duct systems are performed by combining a 1D acoustic wave model with the compliance model. Comparison is then made between the results from the present models, and those from the experiment and the frequency-domain model of previous investigation [Eldredge and Dowling, J. Fluid Mech. 485, 307-335(2003)]. Good agreement is observed. This confirms that the present model can be used to simulate the propagation and dissipation of acoustic plane waves in a lined duct in real-time.  相似文献   

2.
Accurate duct acoustic propagation models are required to predict and reduce aircraft engine noise. These models ultimately rely on measurements of the acoustic impedance to characterize candidate engine nacelle liners. This research effort increases the frequency range of normal-incidence acoustic impedance testing in square ducts by extending the standard two-microphone method (TMM), which is limited to plane wave propagation, to include higher-order modes. The modal decomposition method (MDM) presented includes four normal modes in the model of the sound field, thus increasing the bandwidth from 6.7 to 13.5 kHz for a 25.4 mm square waveguide. The MDM characterizes the test specimen for normal- and oblique-incident acoustic impedance and mode scattering coefficients. The MDM is first formulated and then applied to the measurement of the reflection coefficient matrix for a ceramic tubular specimen. The experimental results are consistent with results from the TMM for the same specimen to within the 95% confidence intervals for the TMM. The MDM results show a series of resonances for the ceramic tubular material exhibiting a monotonic decrease in the resonant peaks of the acoustic resistance with increasing frequency, resembling a rigidly-terminated viscous tube, and also evidence of mode scattering is visible at the higher frequencies.  相似文献   

3.
The propagation of light waves in an underdense plasma is studied using one-dimensional Vlasov-Maxwell numerical simulation.It is found that the light waves can be scattered by electron plasma waves as well as other heavily and weakly damping electron wave modes,corresponding to stimulated Raman and Brilluoin-like scatterings.The stimulated electron acoustic wave scattering is also observed as a high scattering level.High frequency plasma wave scattering is also observed.These electron electrostatic wave modes are due to a non-thermal electron distribution produced by the wave-particle interactions.The collision effects on stimulated electron acoustic wave and the laser intensity effects on the scattering spectra are also investigated.  相似文献   

4.
孙中政  韩旭  王宇飞 《声学学报》2022,47(2):229-240
为了测量高频材料吸声系数,采用声模态分解的方法,基于阻抗管构建测试设备,在阻抗管内测量超过平面波截止频率的的高频吸声系数.测量过程中,通过在阻抗管的周向和轴向分别布置传声器阵列,分离管道内前3阶周向声模态以及各阶声模态的轴向传播入射波和反射波,从而得到最高频率达10000 Hz的材料吸声系数,并通过对比常规阻抗管测试方...  相似文献   

5.
Classical continuum elastic calculations show that the acoustic vibrational modes of an embedded nanoparticle can be lightly damped even when the longitudinal plane wave acoustic impedances Z(o)=rhov(L) of the nanoparticle and the matrix are the same. It is not necessary for the matrix to be less dense or softer than the nanoparticle in order to have long lived vibrational modes. A corrected formula for acoustic impedance is provided for the case of longitudinal spherical waves. Continuum boundary conditions do not always accurately reflect the microscopic nature of the interface between the nanoparticle and the matrix, and a multilayer model of the interface reveals the possibility of additional reduction of mode damping.  相似文献   

6.
A study is made of stable and unstable electromagnetic surface waves at the boundaries of the plane and cylindrical relativistic plasma streams in the frequency range corresponding to positive values of the plasma permittivity. It is demonstrated that there are critical parameters for the transition from slow to fast waves, namely, the angle between the velocity and the wave vector in plane geometry and the smallest mode number in cylindrical geometry. It is shown that the critical parameter for the onset of the firehose instability of an electron stream is the transverse size of the stream. Higher firehose modes of the stream are shown to be suppressed by applying a strong longitudinal magnetic field.  相似文献   

7.
A theory and experimental results for sound propagation through an anisotropic shallow water environment are presented to examine the frequency dependence of the scintillation index in the presence of internal waves. The theory of horizontal rays and vertical modes is used to establish the azimutal and frequency behavior of the sound intensity fluctuations, specifically for shallow water broadband acoustic signals propagating through internal waves. This theory is then used to examine the frequency dependent, anisotropic acoustic field measured during the SWARM'95 experiment. The frequency dependent modal scintillation index is described for the frequency range of 30-200 Hz on the New Jersey continental shelf.  相似文献   

8.
9.
高频离子声波由于Landau阻尼很大,一般难以激发。本文研究了表面约束稳态装置上高频离子声波的激发特性。实验表明,仔细控制放电参数可以激发起纯离子声波,密度涨落n/n_o最大可以达到7.5%。  相似文献   

10.
An acoustic cavity was selected as a stabilization device to control high-frequency combustion instabilities in gas turbines or liquid rocket engine combustors, and the acoustic damping capacity of the acoustic cavity was investigated for various geometric configurations under atmospheric non-reacting conditions. The tuning frequency of the acoustic cavity and the acoustic responses of a model chamber with a single acoustic cavity were studied first. Damping capacity was initially quantified through the frequency width of two split modes and the amplitude-damped ratio. The results showed that the cavity with the largest orifice area or the shortest orifice length was the most effective in acoustic damping of the harmful resonant mode. The effect of the number of cavities on acoustic damping capacity was also studied. Damping capacity was improved by increasing the number of cavities. For a better evaluation of acoustic damping capacity, two quantified parameters; the acoustic absorption, meaning the damping efficiency, and acoustic conductance, meaning the acoustic power loss, were introduced. The case was observed that has had insufficient loss of acoustic power in spite of having the highest absorption efficiency. As a result, fine geometric tuning for the acoustic cavity is required for the sufficient passive control. Also, the choice of the number of cavities is important to optimize the damping efficiency and absolute damping loss in consideration of the restriction of the cavity volume.  相似文献   

11.
For a typical building acoustics configuration, a T-junction of plates formed by a light weight wall placed on a heavy floor, a statistical energy analysis (SEA) model is presented. Only structural systems (i.e., no acoustic wavefields) are considered. Besides bending waves also in-plane waves, quasi-longitudinal and plane transverse waves, in particular, are included in the calculation. A parametric survey is conducted on the T-junction model—for one frequency (1000 Hz) only—in order to find the sensitivity of the SEA model to the inaccuracies of its parameters. It is shown that, when using reverberation time measurements of the plates to determine the internal damping loss factors, the worst case variations of the internal damping loss factors cause variations in the junction dampings of bending waves of about one order higher than any of the other parameters. Therefore, the conclusion is that in cases where the internal damping loss factors are large with respect to the coupling loss factors, it is necessary to obtain more accurate estimates for the internal damping loss factors than are found with simple reverberation time measurements of plates.  相似文献   

12.
A mathematical model that determines the propagation of acoustic waves of different geometry in two-fraction mixtures of liquids with polydispersed gas bubbles of various compositions is presented. A unique dispersion relationship, which takes into account the propagation of the plane, spherical, and cylindrical perturbations in these mixtures, is derived. It is shown that the theoretical curves of the phase velocity and the damping factor agree well with the experimental data involving the resonant frequency range.  相似文献   

13.
We theoretically and experimentally studied the Gilbert damping evolution of both acoustic and optical magnetic resonance modes in the layered flake Cr Cl;with an external magnetic field H applied in plane.Based on a Lagrangian equation and a Rayleigh dissipation function,we predicted that the resonance linewidth△H as a function of microwave frequencyωis nonlinear for both acoustic and optical modes in the Cr Cl;flake,which is significantly different from the linear relationship of△H-ωin ferromagnets.Measuring the microwave transmission through the Cr Cl;flake,we obtained theω–H dispersion and damping evolution△H–ωfor both acoustic and optical modes.Combining both our theoretical prediction and experimental observations,we concluded that the nonlinear damping evolution△H–ωis a consequence of the interlayer interaction during the antiferromagnetic resonance,and the interlayer Gilbert dissipation plays an important role in the nonlinear damping evolution because of the asymmetry of the non-collinear magnetizaiton between layers.  相似文献   

14.
Conditions are established for the generation of a wave pattern with stationary nodes by the superposition of plane waves propagating in a uniformly moving medium. These conditions are then used to derive a closed form expression for the natural frequencies and modes of vibration of a thin strip moving between fixed guides with zero tension and to define an algorithm to determine the natural frequencies and modes of vibration for a wide range of problems of a similar type. The thin strip under tension is used as an example.  相似文献   

15.
Forced vibrations of a railway track excited at the cut-off frequency of one of its wave modes are examined theoretically, numerically and experimentally in the frequency range from 5 to 50 kHz. The background of this paper is the new idea of using the local vibration zone of the rail close to the excitation to detect passing train wheels. An important parameter which influences this local vibration zone is system damping. The determination of a new quality factor to characterize damping of a system which both resonates and interacts with travelling waves is first studied in the case of a beam on a viscoelastic foundation. Some key differences compared with a single-degree-of-freedom (s.d.o.f.) mechanical oscillator are pointed out and an adopted damping measurement method is suggested. The phenomenological behavior of higher vibration modes is then investigated using a model of several elastically connected beams referred to as the multiple-mode model. Modal damping is introduced and the model is studied both in a continuous and in a discretely supported configuration. Both localized and non-localized modes are observed in the latter case. The cut-off frequencies and mode shapes are also determined experimentally at a real test track using a scanning laser interferometer and show good agreement with numerical calculations. The spatial behavior of the measured system response at the test track corresponds well to the effects predicted by the multiple-mode model. Damping measurements are performed and the quality factors of several modes are determined and discussed.  相似文献   

16.
The Rayleigh index has been used for decades by a large number of researchers as an indicator to determine if a flame is driving or damping thermoacoustic interaction mechanisms. The use of the Rayleigh criterion has found applications in rocket combustors, gas turbine combustion technology and basic combustion research. The global Rayleigh index or integral is obtained by integrating the product of heat release rate and pressure fluctuations over space and time. Depending on the phase between pressure oscillations and heat release rate response, the oscillations can be enhanced or damped. It is commonly assumed in literature that the sign of the Rayleigh index from steady state data can be used to determine if the thermoacoustic feedback loop is stabilizing or destabilizing. However, we show in this paper that under fairly general conditions, a correctly measured Rayleigh index is always positive if evaluated from statistically stationary data. This proves to be true even if the heat release rate response to pressure fluctuations is in phase opposition to those pressure fluctuations. This is shown in a straightforward manner by substituting the wave equation with a heat release rate source term into the Rayleigh index. This was verified experimentally on a fully premixed combustion system by measuring the flame chemiluminescence using a photo multiplier and pressure fluctuations using a microphone placed sufficiently close to the flame to ensure acoustic compactness for the frequency range of interest. A large range of operating conditions have been tested, spanning linearly stable and unstable stationary thermoacoustic states, respectively corresponding to resonance or a limit cycle driven by the inherent stochastic forcing from the turbulent combustion noise. The experimental results corroborated the analytic finding: the Rayleigh index is found to be positive for all frequencies and all operating conditions.  相似文献   

17.
An adverse “singing” phenomenon due to flow over perforated liners in a duct was studied experimentally. The liners consisted of honeycomb structures bonded to and sandwiched between two flat aluminum skins. The inner skin in contact with the flow had holes (perforations) with pitch distances either equal to or different from those of the honeycomb structures, forming, respectively, narrow-band or broadband liners. The shedding of vortices in the flow over these holes induced excitation of acoustic modes within the duct, and under the condition whereby the cut-on frequency of an excited mode coincided with, or was very near to, the shedding frequency a very strong tone corresponding to that particular modal cut-on frequency resulted. For narrow-band liners, the “singing” phenomenon could also be induced by cavity resonance. The shedding frequency increased with increase in flow velocities and thus higher order acoustic modes were excited consecutively in a similar manner. The Strouhal number calculated from the observed shedding frequency and the flow velocity was found to vary directly with the hole diameter of the perforate. The high signal to noise ratio during the peak of self-excitation presents a new method in the determination of the wall admittance under the flow conditions.  相似文献   

18.
十字阵短时宽带声源实时定向算法   总被引:4,自引:1,他引:4       下载免费PDF全文
程萍  陈建峰  马驰  张竹 《应用声学》2012,31(2):123-129
面向短时宽带声源实时定向问题,提出了一种基于互功率谱时延估计的十字阵定向优化算法。针对该方法估计结果离散且呈不均匀分布的特点,将观测平面划分为四个测量区域,并利用不同阵元组合分别处理,解决实时性与估计成功率的矛盾;依据互相关函数的特点,设计了若干判断准则,排除由于数据取样短造成的异常时延估计,改善算法的可靠性;采用频域插值方法,一定程度上提高时延估计精度,从而提高定向精度。MATLAB仿真和DSP系统实验表明,这种方法在实际应用中有效提高了对短时宽带声源定向的性能。  相似文献   

19.
The influence of coupling between exchange spin waves and acoustic waves on the spectrum of magnetoelastic vibrations in planar structures (such as a ferrite film-dielectric substrate structure) is investigated theoretically. A strong magnetoelastic coupling is observed in a narrow spectrum of magnetoacoustic modes that corresponds to the phase matching of the exchange magnetostatic and acoustic modes. An explanation is offered for the experimental results obtained earlier by the authors, according to which the linear excitation of exchange acoustic and dipole exchange acoustic modes occurs in a spectral range corresponding to the resonance magnetoelastic coupling of exchange modes irrespective of the degree of pinning of surface spins in the ferrite film. It is demonstrated that the exchange acoustic and dipole exchange acoustic modes can be excited in films with free surface spins due to a substantial transformation of the structure of normal modes of the magnetization vector and elastic displacements in the range of the phase matching of the exchange spin and acoustic modes.  相似文献   

20.
A simple method is used to quantify the performance of non-reflecting boundary conditions for duct acoustic applications. The method uses a two-dimensional wavesplitting technique to decompose the linearized Euler equations into its constitutive modes, allowing the magnitude of reflected waves from outflow boundaries to be accurately determined. Realistic conditions are simulated by conducting the boundary condition analysis using acoustic waves with characteristics often found in duct and turbomachinery problems. For this paper, the method is used to investigate the performance of three different buffer zone implementations and the Perfectly Matched Layer as non-reflecting boundary conditions. The effect of the damping properties of these boundary conditions and the incident acoustic wave characteristics on performance are considered. Results indicate that the buffer zone boundary condition using explicit damping of the solution vector after each timestep produces the best non-reflecting performance. A deterioration in performance was observed for incident waves at high angles relative to the boundary normal for all implementations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号