首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper reports an experimental and computational thermochemical study on 2-thiobarbituric acid (2-thioxodihydropyrimidine-4,6(1H,5H)-dione), [CAS 504-17-6]. The value of the standard (p(0) = 0.1 MPa) molar enthalpy of formation in the gas phase at T = 298.15 K has been determined. The energy of combustion was measured by bomb combustion calorimetry, using a rotatory bomb, and from the result obtained, the standard molar enthalpy of formation in the crystalline state at T = 298.15 K was calculated as -(396.8 ± 0.9) kJ·mol(-1). The enthalpy of sublimation was determined using a transference (transpiration) method in a saturated N(2) stream and a value of the enthalpy of sublimation at T = 298.15 K was derived as (118.3 ± 2.2) kJ·mol(-1). From these results a value of -(278.5 ± 2.4) kJ·mol(-1) for the gas-phase enthalpy of formation at T = 298.15 K was determined. Theoretical calculations at the G3 and G4 levels were performed, and a study of the molecular and electronic structure of the compound has been carried out. Calculated enthalpies of formation are in very good agreement with the experimental value.  相似文献   

2.
This paper reports the value of the standard (p(o) = 0.1 MPa) molar enthalpy of formation in the gas phase at T = 298.15 K for barbituric acid. The enthalpies of combustion and sublimation were measured by static bomb combustion calorimetry and transference (transpiration) method in a saturated N2 stream and a gas-phase enthalpy of formation value of -(534.3 +/- 1.7) kJ x mol(-1) was determined at T = 298.15 K. G3-calculated enthalpies of formation are in very good agreement with the experimental value. The behavior of the sample as a function of the temperature was studied by differential scanning calorimetry, and a new polymorph of barbituric acid at high temperature was found. In the solid state, two anhydrous forms are known displaying two out of the six hydrogen-bonding patterns observed in the alkyl/alkenyl derivatives retrieved from the Cambridge Crystallographic Database. The stability of these motifs has been analyzed by theoretical calculations. X-ray powder diffraction technique was used to establish to which polymorphic form corresponds to the commercial sample used in this study and to characterize the new form at high temperature.  相似文献   

3.
4.
6-Methyl-4-methoxy-5,6,7,8-tetrahydro-2H-[1,3]dioxolo[4,5-g]isoquinolin-5-ol (cotarnine) and its derivatives, namely, 5-dihydrocotarnyl-1,3-dimethylbarbituric acid, dihydrocotarnylnitromethane, and dihydrocotarnylphenylacetonitrile, react with an excess of 1,3-dimethylbarbituric acid to give its 5,5-spiro derivative. The structure of the latter was proved by X-ray diffraction analysis. A possible reaction mechanism was discussed.  相似文献   

5.
6.
The kinetics of reactions of acceptor-stabilized carbanions 2a-m with benzylidenebarbituric and -thiobarbituric acids 1a-e has been determined in a dimethyl sulfoxide solution at 20 degrees C. Second-order rate constants were employed to determine the electrophilicity parameters E of the benzylidenebarbituric and -thiobarbituric acids 1a-e according to the correlation equation log k(20 degrees C) = s(N + E). With E parameters in the range of -10.4 to -13.9, the electrophilicities of 1a-e are comparable to those of analogously substituted benzylidenemalononitriles.  相似文献   

7.
Thiophene-based compounds have widespread use in modern drug design, biodiagnostics, electronic and optoelectronic devices, and conductive polymers. The present study reports an experimental and computational thermochemical study on the relative stabilities of 2- and 3-thiopheneacetic acid methyl esters. The enthalpies of combustion and vaporization were measured by a rotating-bomb combustion calorimeter, Calvet microcalorimetry, and correlation gas chromatography, and the gas-phase enthalpies of formation at T=298.15 K were determined. Standard ab initio molecular orbital calculations at the G3 level were performed, and a theoretical study of the molecular and electronic structure of the compounds studied was carried out. Calculated enthalpies of formation, using atomization and isodesmic reactions are in very good agreement with the experimental results.  相似文献   

8.
9.
10.
11.
12.
The condensation reaction of 1,3-dimethylbarbituric acid with aromatic aldehydes in ethanol has been investigated spectrophotometrically at 25–35°C. The reaction follows overall second-order kinetics, first-order each in reactant. From the dependence of the rate constants on temperature, activation parameters have been calculated. The rate of condensation increases with the presence of electron donating groups on the aromatic ring of the aldehyde. The rate-determining step involves dehydration of the aldol intermediate. The reaction was found to be catalyzed by HCl solutions. Based on this reaction, determination of 10 aromatic aldehydes in a concentration range of 0.13–70.25 μg/ml is proposed. The method was applied for determination of barbituric and 1,3-dimethylbarbituric acids also.  相似文献   

13.
《Tetrahedron》1988,44(11):3241-3249
5-Arylidene-1,3-dimethylbarbituric acid derivatives, such as 1a and 1b, effectively oxidized both alkane- and benzene-thiols to disulfides under neutral condition with concomitant formation of the dihydro compounds (2a) and (2b).Thiol adduct of the dihydro compound was prepared as a stable compound and successfully applied to the synthesis of unsymmetrical disulfide under mild condition in excellent yield.Mechanistic consideration for the oxidation was also described briefly.  相似文献   

14.
The molecular geometry of barbituric and thiobarbituric acid tautomers have been fully optimized using the AMI method in order to estimate the relative energies of the tautomers. The results are in agreement with available experimental data and indicate that in the vapour the barbiturate ring is essentially planar. In both unsubstituted compounds the trioxo structure is found to be the most stable one, in agreement with experimental findings in the solid. Tautomeric equilibria are sensitive to phase change and to substitution at the C5 position. On passing from the vapour to the water the population of the most polar structure increases, although the order of stability remains unchanged and only for the Br and I derivatives it can be suggested the coexistence of two forms in solution. The substitution at C5 does not alter the order of stability except for the 5-nitro derivatives where the dioxo form predominates, in agreement with experimental results in the solid. Electron affinities and ionization potentials of the tautomers have been evaluated and briefly discussed. It is suggested that gas-phase uv photoelectron spectroscopy should be able in analysing the tautomeric equilibria of barbituric and thiobarbituric acids in the vapour.  相似文献   

15.
The standard (p(o) = 0.1 MPa) molar energies of combustion in oxygen, at T = 298.15 K, of solid 3,3-tetramethyleneglutaric acid and the related 3,3-tetramethyleneglutaric anhydride and 3,3-tetramethyleneglutarimide were measured by static bomb combustion calorimetry. The values of the standard molar enthalpies of sublimation, at T = 298.15 K, were obtained by Calvet microcalorimetry, allowing the calculation of the standard molar enthalpies of formation of the compounds, in the gaseous state, at T = 298.15 K. The geometries of the experimentally studied compounds were fully optimized using density functional theory with the B3LYP functional and extended basis sets. More accurate energies were also obtained from single-point calculations at the most stable B3LYP/6-311G** geometries, using the cc-pVTZ basis set. From these calculations the standard molar enthalpies of formation of 3,3-tetramethyleneglutaric acid, 3,3-tetramethyleneglutaric anhydride, and 3,3-tetramethyleneglutarimide were estimated using isodesmic reactions involving glutaric acid, glutaric anhydride, and glutarimide, respectively. Experimental and computational results were used in the discussion of the interrelation of energetics and structure in these compounds and compared with other structurally related compounds.  相似文献   

16.
The dissociation constant (pKa) of a drug is a key parameter in drug discovery and pharmaceutical formulation. The hydroxy substituent has a significant effect on the acidity of hydroxycinnamic acid. In this work, the acidic constants of coumaric acids are obtained experimentally by spectrophotometry using the chemometric method and calculated theoretically using ab initio quantum mechanical method at the HF/6‐31G* level of theory in combination with the SMD continuum solvation method. Rank annihilation factor analysis (RAFA) is an efficient chemometric technique based on the elimination of the contribution of one of the chemical components from the data matrix. RAFA cannot be performed because the pure spectrum of HA? is not available. So, two‐rank annihilation factor analysis (TRAFA) is proposed for the determination of the pKa OF H2A. A comparison between the pKa values obtained previously by TRAFA for the molecules o‐coumaric acid (4.13, 9.58), m‐coumaric acid (4.48, 10.35), and p‐coumaric acid (4.65, 9.92) makes it clear that there is good agreement between the results obtained by TRAFA and ab initio quantum mechanical method.  相似文献   

17.
18.
Isomerization and tautomerism of 16 isomers of barbituric acid (BA) were studied at the MP2 and B3LYP levels of theory. Activation energies (E a), imaginary frequencies (υ), and Gibbs free energies (ΔG #) of the amine-imine and keto-enol tautomerisms and O–H internal rotations were calculated. The activation energies of amine-imine tautomerisms were in the range of 110–200 kJ/mol and for keto-enol tautomerisms were larger than 200 kJ/mol. The calculated activation energies of internal O–H rotations were smaller than 60 kJ/mol. Effect of micro-hydration on the transition state structures and activation energies of the tautomerisms were also investigated. Water molecule catalyzed the tautomerisms and decreased the activation energies of both the amine-imine and keto-enol tautomerisms about 100–120 kJ/mol.  相似文献   

19.
20.
The standard (p° = 0.1 MPa) molar enthalpies of formation of 2-, 3-, and 4-chloronitrobenzene isomers, in the crystalline state, at T = 298.15 K, were derived from the standard (p° = 0.1 MPa) massic energies of combustion, in oxygen, at T = 298.15 K, measured by rotating bomb combustion calorimetry. The standard molar enthalpies of sublimation of the isomers, at T = 298.15 K, were obtained by high temperature Calvet microcalorimetry.  相似文献   

Empty Cell-ΔcUm°(cr)/(kJ · mol?1)-ΔcHm°(cr)/(kJ · mol?1)-ΔcrgHm°/(kJ · mol?1)
2-Chloronitrobenzene2939.5 ± 0.718.7 ± 1.080.9 ± 1.5
3-Chloronitrobenzene2915.8 ± 0.842.4 ± 1.282.5 ± 1.5
4-Chloronitrobenzene2921.7 ± 1.436.5 ± 1.676.2 ± 2.1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号