首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
JI Jie 《理论物理通讯》2008,50(6):1279-1282
In this paper, we present an extended Exp-function method to differential-difference equation(s). With the help of symbolic computation, we solve discrete nonlinear Schrödinger lattice as an example, and obtain a series of general solutions in forms of Exp-function.  相似文献   

2.
3.
A systematic method which is based on the classical Lie group reduction is used to find the novel exact solution of the cubic-quintic nonlinear Schrödinger equation (CQNLS) with varying dispersion, nonlinearity, and gain or absorption. Algebraic solitary-wave as well as kink-type solutions in three kinds of optical fibers represented by coefficient varying CQNLS equations are studied in detail. Some new exact solutions of optical solitary wave with a simple analytic form in these models are presented. Appropriate solitary wave solutions are applied to discuss soliton propagation in optical fibres, and the amplification and compression of pulses in optical fibre amplifiers.  相似文献   

4.
We construct analytical periodic wave and soliton solutions to the generalized nonautonomous nonlinear Schrödinger equation with time- and space-dependent distributed coefficients in harmonic and optical lattice potentials. We utilize the similarity transformation technique to obtain these solutions. Constraints for the dispersion coefficient, the nonlinearity, and the gain (loss) coefficient are presented at the same time. Various shapes of periodic wave and soliton solutions are studied analytically and physically. Stability analysis of the solutions is discussed numerically.  相似文献   

5.
Some new exact travelling wave and period solutions of discrete nonlinear Schrödinger equation are found by using a hyperbolic tangent function approach, which was usually presented to find exact travelling wave solutions of certain nonlinear partial differential models. Now we can further extend the new algorithm to other nonlinear differential-different models.  相似文献   

6.
With the aid of computation, we consider the variable-coefficient coupled nonlinear Schrödinger equations with the effects of group-velocity dispersion, self-phase modulation and cross-phase modulation, which have potential applications in the long-distance communication of two-pulse propagation in inhomogeneous optical fibers. Based on the obtained nonisospectral linear eigenvalue problems (i.e. Lax pair), we construct the Darboux transformation for such a model to derive the optical soliton solutions. In addition, through the one- and two-soliton-like solutions, we graphically discuss the features ofpicosecond solitons in inhomogeneous optical fibers.  相似文献   

7.
王燕 《理论物理通讯》2013,59(5):643-648
The dynamical self-trapping of an excitation propagating on one-dimensional of different sizes with nextnearest neighbor (NNN) interaction is studied by means of an explicit fourth order symplectic integrator. Using localized initial conditions, the time-averaged occupation probability of the initial site is investigated which is a function of the degree of nonlinearity and the linear coupling strengths. The self-trapping transition occurs at larger values of the nonlinearity parameter as the NNN coupling strength of the lattice increases for fixed size. Furthermore, given NNN coupling strength, the self-trapping properties for different sizes are considered which are some different from the case with general nearest neighbor (NN) interaction.  相似文献   

8.
In this paper, a new type (or the second type) of transformation which is used to map the variable coefficient nonlinear Schrödinger (VCNLS) equation to the usual nonlinear Schrödinger (NLS) equation is given. As a special case, a new kind of nonautonomous NLS equation with a t-dependent potential is
introduced. Further, by using the new transformation and making full use of the known soliton and rogue wave solutions of the usual NLS equation, the corresponding kinds of solutions of a special model of the new nonautonomous NLS equation are discussed respectively. Additionally, through using the new transformation, a new expression, i.e., the non-rational formula, of the rogue wave of a special VCNLS equation is given analytically.
The main differences between the two types of transformation mentioned above are listed by three items.  相似文献   

9.
An integrable discrete system obtained by the algebraization of the difference operator is studied. The system is named discrete generalized nonlinear Schrödinger (GNLS) equation, which can be reduced to classical discrete nonlinear Schrödinger (NLS) equation. Furthermore, all of the linear reductions for the discrete GNLS equation are given through the theory of circulant matrices and the discrete NLS equation is obtained by one of the reductions. At the same time, the recursion operator and symmetries of continuous GNLS equation are successfully recovered by its corresponding discrete ones.  相似文献   

10.
The symmetries, symmetry reductions, and exact solutions of a coupled nonlinear Schrodinger (CNLS) equation derived from the governing system for atmospheric gravity waves are researched by means of classical Lie group approach in this paper. Calculation shows the CNLS equation is invariant under some Galilean transformations, scaling transformations, phase shifts, and space-time translations. Some ordinary differential equations are derived from the CNLS equation. Several exact solutions including envelope cnoidal waves, solitary waves and trigonometric function solutions for the CNLS equation are also obtained by making use of symmetries.  相似文献   

11.
An asymptotic analysis of the Marchenko integral equation for the sine-Gordon equation is presented. The results are used for a construction of soliton asymptotics of decreasing and some non-decreasing solutions of the sine-Gordon equation. The soliton phases are shown to have an additional shift with respect to the reflectionless case caused by the non-zero reflection coefficient of the corresponding Dirac operator. Explicit formulas for the phases are also obtained. The results demonstrate an interesting phenomenon of splitting of non-decreasing solutions into an infinite series of asymptotic solitons.  相似文献   

12.
With the aid of a class of nonlinear ordinary differential equation (ODE) and its various positive solutions, four types of exact solutions of the generalized derivative nonlinear Schrödinger equation (GDNLSE) have been found out, which are the bell-type solitary wave solution, the algebraic solitary wave solution, the kink-type solitary wave solution and the sinusoidal traveling wave solution, provided that the coefficients of GDNLSE satisfy certain constraint conditions. For more general GDNLSE, the similar results are also given.  相似文献   

13.
An explicit N-fold Darboux transformation for a coupled of derivative nonlinear Schrödinger equations is constructed with the help of a gauge transformation of spectral problems. As a reduction, the Darboux transformation for well-known Gerdjikov-Ivanov equation is further obtained, from which a general form of N-soliton solutions for Gerdjikov-Ivanov equation is given.  相似文献   

14.
An improved homogeneous balance principle and an F-expansiontechnique are used to construct exact self-similar solutions to the cubic-quintic nonlinear Schrödinger equation. Such solutions exist under certain conditions, and impose constraints on the functions describing dispersion, nonlinearity, and the external potential. Some simple self-similar waves are presented.  相似文献   

15.
16.
In this paper, the generalized Darboux transformation is constructed to variable coefficient nonlinear Schrödinger (NLS) equation. The N-th order rogue wave solution of this variable coefficient NLS equation is obtained by determinant expression form. In particular, we present rogue waves from first to third-order through some figures and analyze their dynamics.  相似文献   

17.
Bilinear forms of the non-isospectral derivative nonlinear Schrǒdinger equation are derived. The N-soliton solutions of this equation are obtained by Hirota's method.  相似文献   

18.
By using the generally projective Riccati equation method, more new exact travelling wave solutions to extended nonlinear Schrödinger equation (NLSE), which describes the femtosecond pulse propagation in monomode optical fiber, are found, which include bright soliton solution, dark soliton solution, new solitary waves, periodic solutions, and rational solutions. The finding of abundant solution structures for extended NLSE helps to study the movement rule of femtosecond pulse propagation in monomode optical fiber.  相似文献   

19.
A general formula for the N-tuple polesoliton solutions of the modified nonlinear Schrödinger equation, which corresponds to a nonzero pole of order N of the Jost solution to the corresponding Lax-pair equations, is derived.  相似文献   

20.
We study the existence of dark solitons of the defocusing cubic nonlinear Schrödinger (NLS) eqaution with the spatially-periodic potential and nonlinearity. Firstly, we propose six families of upper and lower solutions of the dynamical systems arising from the stationary defocusing NLS equation. Secondly, by regarding a dark soliton as a heteroclinic orbit of the Poincaré map, we present some constraint conditions for the periodic potential and nonlinearity to show the existence of stationary dark solitons of the defocusing NLS equation for six different cases in terms of the theory of strict lower and upper solutions and the dynamics of planar homeomorphisms. Finally, we give the explicit dark solitons of the defocusing NLS equation with the chosen periodic potential and nonlinearity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号