首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Advanced and sensitive spectrophotometric and chemometric analytical methods were successfully established for the stability-indicating assay of cromolyn sodium (CS) and its alkaline degradation products (Deg1 and Deg2). Spectrophotometric mean centering ratio spectra method (MCR) and chemometric methods, including principal component regression (PCR) and partial least square (PLS-2) methods, were applied. Peak amplitudes after MCR at 367.8 nm, 373.8 nm and 310.6 nm were used within linear concentration ranges of 2–40 µg mL−1, 5–40 µg mL−1 and 10–100 µg mL−1 for CS, Deg1 and Deg2, respectively. For PCR and PLS-2 models, a calibration set of eighteen mixtures and a validation set of seven mixtures were built for the simultaneous determination of CS, Deg1 and Deg2 in the ranges of 5–13 µg mL−1, 8–16 µg mL−1, and 10–30 µg mL−1, respectively. The authors emphasize the importance of a stability-indicating strategy for the investigation of pharmaceutical products.  相似文献   

2.
Abstract

A new and simple RP-HPLC-UV method was developed for well-separation of vildagliptin raw material and its degradation products at different conditions; it uses of ammonium acetate buffer at pH= 7.5 and methanol with Athena C18 -WP (250?mm) column. Results show that six degradants have been identified using LC–MS technique, in addition to the NMR approach in some cases. One degradant at relative retention time (RRT) 1.3 was formed under acidic condition and designated as 2-((1R, 3S, 5R, 7S)-3-hydroxyadamantan-1-yl) hexahydropyrrolo[1,2-a]pyrazine-1,4-dione at m/z = 304. Three degradants were formed under various conditions of basic hydrolysis at RRTs 1.2, 0.6 and 0.4 with following names and molar masses (m/z), respectively: 1-(((1S, 3S, 5S, 7S)-1,3-dihydroxyadamantan-2-yl)glycyl)pyrrolidine-2-carboxamide at m/z = 337.2, 1-(((1R, 3S, 5R, 7S)-3-hydroxyadamantan-1-yl)glycyl)pyrrolidine-2-carboxamide at m/z = 321.1 and (1,4-dioxo-1,4,6,7,8,8a-hexahydropyrrolo[1,2-a]pyrazin-3-yl)glycylproline at m/z = 322.6. Another three degradants were also formed under oxidative oxidations of vildagliptin, one at RRT 0.38 and designated as N-hydroxy-N-((1R, 3S, 5R, 7S)-3-hydroxyadamantan-1-yl) glycinate with m/z 241.1, the second one was identical to that formed under basic hydrolysis at RRT 0.6 and the last one has RRT 0.8 and was identified as (1S, 3R, 5R, 7S)-3-(hydroxyamino)adamantan-1-ol at m/z 183.1. Formation mechanisms for the degradation products were described.  相似文献   

3.
The kinetics of the reaction of hydroxyl radical (OH) with dimethyl methylphosphonate (DMMP, (CH3O)2CH3PO) (reaction 1) OH + DMMP products (1) was studied at the bath gas (He) pressure of 1 bar over the 295–837 K temperature range. Hydroxyl radicals were produced in the fast reaction of electronically excited oxygen atoms O(1D) with H2O. The time-resolved kinetic profiles of hydroxyl radicals were recorded via UV absorption at around 308 nm using a DC discharge H2O/Ar lamp. The reaction rate constant exhibits a pronounced V-shaped temperature dependence, negative in the low temperature range, 295–530 K (the rate constant decreases with temperature), and positive in the elevated temperature range, 530–837 K (the rate constant increases with temperature), with a turning point at 530 ± 10 K. The rate constant could not be adequately fitted with a standard 3-parameter modified Arrhenius expression. The data were fitted with a 5-parameter expression as: k1 = 2.19 × 10−14(T/298)2.43exp(15.02 kJ mol−1/RT) + 1.71 × 10−10exp(−26.51 kJ mol−1/RT) cm3molecule−1s−1 (295–837 K). In addition, a theoretically predicted pressure dependence for such reactions was experimentally observed for the first time.  相似文献   

4.
An analytical procedure regarding the determination of selenium(IV) by anodic stripping voltammetry exploiting the in situ plated bismuth film electrode is described. Since organics are commonly present in untreated natural water samples, the use of Amberlite XAD-7 resin turns out to be quite important to avoid problems such as the adsorption of these compounds on the working electrode. The optimum circumstances for the detection of selenium in water using differential pulse voltammetry techniques were found to be as follows: 0.1 mol L−1 acetic acid, 1.9 × 10−5 mol L−1 Bi(III), 0.1 g Amberlite XAD-7 resin, and successive potentials of −1.6 V for 5 s and −0.4 V for 60 s, during which the in situ formation of the bismuth film on glassy carbon and the accumulation of selenium took place. The current of the anodic peak varies linearly with the selenium concentration ranging from 3 × 10−9 mol L−1 to 3 × 10−6 mol L−1 (r = 0.9995), with a detection limit of 8 × 10−10 mol L−1. The proposed procedure was used for Se(IV) determination in certified reference materials and natural water samples, and acceptable results and recoveries were obtained.  相似文献   

5.
Poly(o-methoxyaniline) emeraldine-salt form (ES-POMA) was chemically synthesized using hydrochloric acid and subjected to a heat treatment (HT) process for 1 h at 100 °C (TT100) and 200 °C (TT200). The HT process promoted a progressive decrease in crystallinity. The Le Bail method revealed a decomposition from tetrameric to trimeric-folded chains after the HT process. The unheated POMA-ES presented a globular vesicular morphology with varied micrometric sizes. The heat treatment promoted a reduction in these globular structures, increasing the non-crystalline phase. The boundary length (S) and connectivity/Euler feature (χ) parameters were calculated from the SEM images, revealing that ES-POMA presented a wide distribution of heights. The TT100 and TT200 presented a narrow boundary distribution, suggesting smoother surfaces with smaller height variations. The UV-VIS analysis revealed that the transition at 343 nm (nonlocal ππ*) was more intense in the TT200 due to the electronic delocalization, which resulted from the reduced polymer chain caused by the HT process. In addition to the loss of conjugation, counter ion withdrawal reduced the ion-chain interaction, decreasing the local electron density. This result shows the influence of the chlorine counter ions on the peaks position related to the HOMO → LUMO transition, since the π → polaron transition occurs due to the creation of the energy states due to the presence of counter ions. Finally, the electrical conductivity decreased after the HT process from 1.4 × 10−4 S.cm−1 to 2.4 × 10−6 S.cm−1 as result of the polymer deprotonation/degradation. Thus, this paper proposed a systematic evaluation of the POMA molecular structure and crystallite size and shape after heat treatment.  相似文献   

6.
A simple, precise, and accurate reversed-phase ultra-performance liquid chromatographic (UPLC) method was developed and validated for the determination of a mycophenolic acid-curcumin (MPA-CUR) conjugate in buffer solutions. Chromatographic separation was performed on a C18 column (2.1 × 50 mm id, 1.7 µm) with a gradient elution system of water and acetonitrile, each containing 0.1% formic acid, at a flow rate of 0.6 mL/min. The column temperature was controlled at 33 °C. The compounds were detected simultaneously at the maximum wavelengths of mycophenolic acid (MPA), 254 nm, and curcumin (CUR), or MPA-CUR, at 420 nm. The developed method was validated according to the ICH Q2(R1) guidelines. The linear calibration curves of the assay ranged from 0.10 to 25 μg/mL (r2 ≥ 0.995, 1/x2 weighting factor), with a limit of detection and a limit of quantitation of 0.04 and 0.10 μg/mL, respectively. The accuracy and precision of the developed method were 98.4–101.6%, with %CV < 2.53%. The main impurities from the specificity test were found to be MPA and CUR. Other validation parameters, including robustness and solution stability, were acceptable under the validation criteria. Forced degradation studies were conducted under hydrolytic (acidic and alkaline), oxidative, thermal, and photolytic stress conditions. MPA-CUR was well separated from MPA, CUR, and other unknown degradation products. The validated method was successfully applied in chemical kinetic studies of MPA-CUR in different buffer solutions.  相似文献   

7.
When dealing with simple phenols such as caffeic acid (CA) and ferulic acid (FA), found in a variety of plants, it is very important to have control over the most important factors that accelerate their degradation reactions. This is the first report in which the stabilities of these two compounds have been systematically tested by exposure to various different factors. Forced degradation studies were performed on pure standards (trans-CA and trans-FA), dissolved in different solvents and exposed to different oxidative, photolytic and thermal stress conditions. Additionally, a rapid, sensitive, and selective stability-indicating gas chromatographic-mass spectrometric method was developed and validated for determination of trans-CA and trans-FA in the presence of their degradation products. Cis-CA and cis-FA were confirmed as the only degradation products in all the experiments performed. All the compounds were perfectly separated by gas chromatography (GC) and identified using mass spectrometry (MS), a method that additionally elucidated their structures. In general, more protic solvents, higher temperatures, UV radiation and longer storage times led to more significant degradation (isomerization) of both trans-isomers. The most progressive isomerization of both compounds (up to 43%) was observed when the polar solutions were exposed to daylight at room temperature for 1 month. The method was validated for linearity, precision as repeatability, limit of detection (LOD) and limit of quantitation (LOQ). The method was confirmed as linear over tested concentration ranges from 1−100 mg L−1 (r2s were above 0.999). The LOD and LOQ for trans-FA were 0.15 mg L−1 and 0.50 mg L−1, respectively. The LOD and LOQ for trans-CA were 0.23 mg L−1 and 0.77 mg L−1, respectively.  相似文献   

8.
By dealing CrCl3∙3THF with the corresponding ligands (L1–L5), an array of fluoro-substituted chromium (III) chlorides (Cr1–Cr5) bearing 2-[1-(2,4-dibenzhydryl-6-fluoro- phenylimino)ethyl]-6-[1-(arylimino)ethyl]pyridine (aryl = 2,6-Me2Ph Cr1, 2,6-Et2Ph Cr2, 2,6-iPr2Ph Cr3, 2,4,6-Me3Ph Cr4, 2,6-Et2-4-MePh Cr5) was synthesized in good yield and validated via Fourier Transform Infrared (FT-IR) spectroscopy and elemental analysis. Besides the routine characterizations, the single-crystal X-ray diffraction study revealed the solid-state structures of complexes Cr2 and Cr4 as the distorted-octahedral geometry around the chromium center. Activated by either methylaluminoxane (MAO) or modified methylaluminoxane (MMAO), all the chromium catalysts exhibited high activities toward ethylene polymerization with the MMAO-promoted polymerizations far more productive than with MAO (20.14 × 106 g (PE) mol−1 (Cr) h−1 vs. 10.03 × 106 g (PE) mol−1 (Cr) h−1). In both cases, the resultant polyethylenes were found as highly linear polyethylene waxes with low molecular weights around 1–2 kg mol−1 and narrow molecular weight distribution (MWD range: 1.68–2.25). In general, both the catalytic performance of the ortho-fluorinated chromium complexes and polymer properties have been the subject of a detailed investigation and proved to be highly dependent on the polymerization reaction parameters (including cocatalyst type and amount, reaction temperature, ethylene pressure and run time).  相似文献   

9.
This work aimed to prepare a nanoemulsion containing the essential oil of the Protium heptaphyllum resin and evaluate its biocidal activities against the different stages of development of the Aedes aegypti mosquito. Ovicide, pupicide, adulticide and repellency assays were performed. The main constituents were p-cymene (27.70%) and α-pinene (22.31%). The developed nanoemulsion showed kinetic stability and monomodal distribution at a hydrophilic–lipophilic balance of 14 with a droplet size of 115.56 ± 1.68 nn and a zeta potential of −29.63 ± 3.46 mV. The nanoemulsion showed insecticidal action with LC50 0.404 µg·mL−1 for the ovicidal effect. In the pupicidal test, at the concentration of 160 µg·mL−1, 100% mortality was reached after 24 h. For adulticidal activity, a diagnostic concentration of 200 µg·mL−1 (120 min) was determined. In the repellency test, a concentration of 200 µg·mL−1 during the 180 min of the test showed a protection index of 77.67%. In conclusion, the nanobiotechnological product derived from the essential oil of P. heptaphyllum resin can be considered as a promising colloid that can be used to control infectious disease vectors through a wide range of possible modes of applications, probably as this bioactive delivery system may allow the optimal effect of the P. heptaphyllum terpenes in aqueous media and may also induce satisfactory delivery to air interfaces.  相似文献   

10.
By reacting [{Cp‴Fe(CO)2}2(µ,η1:1-P4)] (1) with in situ generated phosphenium ions [Ph2P][A] ([A] = [OTf] = [O3SCF3], [PF6]), a mixture of two main products of the composition [{Cp‴Fe(CO)2}2(µ,η1:1-P5(C6H5)2)][PF6] (2a and 3a) could be identified by extensive 31P NMR spectroscopic studies at 193 K. Compound 3a was also characterized by X-ray diffraction analysis, showing the rarely observed bicyclo[2.1.0]pentaphosphapentane unit. At room temperature, the novel compound [{Cp‴Fe}(µ,η4:1-P5Ph2){Cp‴(CO)2Fe}][PF6] (4) is formed by decarbonylation. Reacting 1 with in situ generated diphenyl arsenium ions gives short-lived intermediates at 193 K which disproportionate at room temperature into tetraphenyldiarsine and [{Cp‴Fe(CO)2}441:1:1:1-P8)][OTf]2 (5) containing a tetracyclo[3.3.0.02,7.03,6]octaphosphaoctane ligand.  相似文献   

11.
Mango has been described as a valuable source of nutrients and enzymes that are beneficial to human health. Drying at different temperatures not only affects the nutritional properties but can also contribute to the degradation of valuable enzymes in dried fruit. The novelty of this paper is to investigate the quality of hot air dried mango in terms of activity retention of the heat-sensitive enzymes (HSE). For this, HSE was first screened in fresh mango flesh of the variety Samar Bahisht (SB) Chaunsa. Later, the combined effect of different drying temperatures (40 °C, 50 °C, 60 °C, 70 °C, and 80 °C) and air velocities (1.0 ms−1 and 1.4 ms−1) on the activity retention of HSE in dried mango slices of the varieties Sindri, SB Chaunsa, and Tommy Atkins were investigated. The results showed that the drying temperature had a significant impact on the degradation of HSE, while at the same time some influence of the air velocity was also observed. Drying at 40 °C and an air velocity of 1.4 ms−1 retained more HSE compared to those samples dried at higher temperatures. The least retention of HSE was found in samples dried at 80 °C.  相似文献   

12.
A monolithic rod of polyurethane foam–[4-(2-pyridylazo) resorcinol] (PUF–PAR) as a simple chemical sensor for lead assays with smartphone detection and image processing was developed. With readily available simple apparatus such as a plastic cup and a stirrer rod, the monolithic PUF rod was synthesized in a glass tube. The monolithic PUF–PAR rod could be directly loaded by standard/sample solution without sample preparation. A one-shot image in G/B value from a profile plot in ImageJ for a sample with triplicate results via a single standard calibration approach was obtained. A linear single standard calibration was: [G/B value] = −0.038[µg Pb2+] + 2.827, R2 = 0.95 for 10–30 µg Pb2+ with a limit of quantitation (LOQ) of 33 µg L−1. The precision was lower than 15% RSD. The proposed method was tested by an assay for Pb2+ contents in drinking water samples from Bangkok. The results obtained by the proposed method agree with those of ICP-OES and with 100–120% recovery, demonstrating that the method is useful for screening on-site water monitoring.  相似文献   

13.
The metabolomics approach has proved to be promising in achieving non-targeted screening for those unknown and unexpected (U&U) contaminants in foods, but data analysis is often the bottleneck of the approach. In this study, a novel metabolomics analytical method via seeking marker compounds in 50 pharmaceutical and personal care products (PPCPs) as U&U contaminants spiked into lettuce and maize matrices was developed, based on ultrahigh-performance liquid chromatography-tandem mass spectrometer (UHPLC-MS/MS) output results. Three concentration groups (20, 50 and 100 ng mL−1) to simulate the control and experimental groups applied in the traditional metabolomics analysis were designed to discover marker compounds, for which multivariate and univariate analysis were adopted. In multivariate analysis, each concentration group showed obvious separation from other two groups in principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) plots, providing the possibility to discern marker compounds among groups. Parameters including S-plot, permutation test and variable importance in projection (VIP) in OPLS-DA were used for screening and identification of marker compounds, which further underwent pairwise t-test and fold change judgement for univariate analysis. The results indicate that marker compounds on behalf of 50 PPCPs were all discovered in two plant matrices, proving the excellent practicability of the metabolomics approach on non-targeted screening of various U&U PPCPs in plant-derived foods. The limits of detection (LODs) for 50 PPCPs were calculated to be 0.4~2.0 µg kg−1 and 0.3~2.1 µg kg−1 in lettuce and maize matrices, respectively.  相似文献   

14.
We characterized the stationary points along the nucleophilic substitution (SN2), oxidative insertion (OI), halogen abstraction (XA), and proton transfer (PT) product channels of M + CH3X (M = Cu, Ag, Au; X = F, Cl, Br, I) reactions using the CCSD(T)/aug-cc-pVTZ level of theory. In general, the reaction energies follow the order of PT > XA > SN2 > OI. The OI channel that results in oxidative insertion complex [CH3–M–X] is most exothermic, and can be formed through a front-side attack of M on the C-X bond via a high transition state OxTS or through a SN2-mediated halogen rearrangement path via a much lower transition state invTS. The order of OxTS > invTS is inverted when changing M to Pd, a d10 metal, because the symmetry of their HOMO orbital is different. The back-side attack SN2 pathway proceeds via typical Walden-inversion transition state that connects to pre- and post-reaction complexes. For X = Cl/Br/I, the invSN2-TS’s are, in general, submerged. The shape of this M + CH3X SN2 PES is flatter as compared to that of a main-group base like F + CH3X, whose PES has a double-well shape. When X = Br/I, a linear halogen-bonded complex [CH3−X∙··M] can be formed as an intermediate upon the front-side attachment of M on the halogen atom X, and it either dissociates to CH3 + MX through halogen abstraction or bends the C-X-M angle to continue the back-side SN2 path. Natural bond orbital analysis shows a polar covalent M−X bond is formed within oxidative insertion complex [CH3–M–X], whereas a noncovalent M–X halogen-bond interaction exists for the [CH3–X∙··M] complex. This work explores competing channels of the M + CH3X reaction in the gas phase and the potential energy surface is useful in understanding the dynamic behavior of the title and analogous reactions.  相似文献   

15.
Seeking to enrich the yet less explored field of scorpionate complexes bearing antioxidant properties, we, here, report on the synthesis, characterization and assessment of the antioxidant activity of new complexes derived from three scorpionate ligands. The interaction between the scorpionate ligands thallium(I) hydrotris(5-methyl-indazolyl)borate (TlTp4Bo,5Me), thallium(I) hydrotris(4,5-dihydro-2H-benzo[g]indazolyl)borate (TlTpa) and potassium hydrotris(3-tert-butyl- pyrazolyl)borate (KTptBu), and metal(II) chlorides, in dichloromethane at room temperature, produced a new family of complexes having the stoichiometric formula [M(Tp4Bo,5Me)2] (M = Cu, 1; Zn, 4; Cd, 7), [M(Tpa)2] (M = Cu, 2; Zn, 5; Cd, 8), [Cu(HpztBu)3Cl2] (3), [Zn(TptBu)Cl] (6) and [Cd(BptBu)(HpztBu)Cl] (9). The obtained metal complexes were characterized by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance and elemental analysis, highlighting the total and partial hydrolysis of the scorpionate ligand TptBu during the synthesis of the Cu(II) complex 3 and the Cd(II) complex 9, respectively. An assessment of the antioxidant activity of the obtained metal complexes was performed through both enzymatic and non-enzymatic assays against 1,1-diphenyl-2-picryl- hydrazyl (DPPH·), 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), hydroxyl (HO·), nitric oxide (NO·), superoxide (O2) and peroxide (OOH·) radicals. In particular, the complex [Cu(Tpa)2]⋅0.5H2O (2) exhibited significant antioxidant activity, as good and specific activity against superoxide (O2−·), (IC50 values equal to 5.6 ± 0.2 μM) and might be identified as auspicious SOD-mimics (SOD = superoxide dismutase).  相似文献   

16.
The solubility parameters, and solution thermodynamics of temozolomide (TMZ) in 10 frequently used solvents were examined at five different temperatures. The maximum mole fraction solubility of TMZ was ascertained in dimethyl sulfoxide (1.35 × 10−2), followed by that in polyethylene glycol-400 (3.32 × 10−3) > Transcutol® (2.89 × 10−3) > ethylene glycol (1.64 × 10−3) > propylene glycol (1.47 × 10−3) > H2O (7.70 × 10−4) > ethyl acetate (5.44 × 10−4) > ethanol (1.80 × 10−4) > isopropyl alcohol (1.32 × 10−4) > 1-butanol (1.07 × 10−4) at 323.2 K. An analogous pattern was also observed for the other investigated temperatures. The quantitated TMZ solubility values were regressed using Apelblat and Van’t Hoff models and showed overall deviances of 0.96% and 1.33%, respectively. Apparent thermodynamic analysis indicated endothermic, spontaneous, and entropy-driven dissolution of TMZ in all solvents. TMZ solubility data may help to formulate dosage forms, recrystallize, purify, and extract/separate TMZ.  相似文献   

17.
A new flow injection spectrophotometric method for the determination of N-acetyl-l-cysteine ethyl ester (NACET) was developed and validated. The method is based on the reduction of Cu(II)-ligand complexes to chromophoric Cu(I)-ligand complexes with the analyte. The studied ligands were neocuproine (NCN), bicinchoninic acid (BCA) and bathocuproine disulfonic acid (BCS). The absorbance of the Cu(I)-ligand complex was measured at 458, 562 and 483 nm for the reactions of NACET with NCN, BCA and BCS, respectively. The method was validated in terms of linear dynamic range, limit of detection and quantitation, accuracy, selectivity, and precision. Experimental conditions were optimized by a univariate method, yielding linear calibration curves in a concentration range from 2.0 × 10−6 mol L−1 to 2.0 × 10−4 mol L−1 using NCN; 2.0 × 10−6 mol L−1 to 1.0 × 10−4 mol L−1 using BCA and 6.0 × 10−7 mol L−1 to 1.2 × 10−4 mol L−1 using BCS. The achieved analytical frequency was 90 h−1 for all three ligands. The method was successfully employed for NACET determination in pharmaceutical preparations, indicating that this FIA method fulfilled all the essential demands for the determination of NACET in quality control laboratories, as it combined low instrument and reagent costs with a high sampling rate.  相似文献   

18.
High performance liquid chromatography (HPLC) for catechins and related compounds in Miang (traditional Lanna fermented tea leaf) was developed to overcome the matrices during the fermentation process. We investigated a variety of columns and elution conditions to determine seven catechins, namely (+)-catechin, (−)-gallocatechin, (−)-epigallocatechin, (−)-epicatechin, (−)-epigallocatechin gallate, (−)-gallocatechin gallate, (−)-epicatechin gallate, as well as gallic acid and caffeine, resulting in the development of reproducible systems for analyses that overcome sample matrices. Among the three reversed-phase columns, column C (deactivated, with extra dense bonding, double endcapped monomeric C18, high-purity silica at 3.0 mm × 250 mm and a 5 µm particle size) significantly improved the separation between Miang catechins in the presence of acid in the mobile phase within a shorter analysis time. The validation method showed effective linearity, precision, accuracy, and limits of detection and quantitation. The validated system was adequate for the qualitative and quantitative measurement of seven active catechins, including gallic acid and caffeine in Miang, during the fermentation process and standardization of Miang extracts. The latter contain catechins and related compounds that are further developed into natural active pharmaceutical ingredients (natural APIs) for cosmeceutical and nutraceutical products.  相似文献   

19.
N-(n-butyl) thiophosphoric triamide (NBPT) is a urease inhibitor utilised in urea-based fertilizers. In Ireland, fertilizer treated with NBPT is applied to pasture to mitigate both ammonia and nitrous oxide emissions, but concerns arise as to the potential for residues in milk products. A quick ultrafiltration extraction and ultra-high performance liquid chromatography coupled with mass spectrometry triple quadrupole (UHPLC-MS/MS) quantitation method was developed and validated in this study. The method was applied in the analysis of samples collected from a field study investigating potential transfer of NBPT residues into milk. NBPT and NBPTo residues, were extracted from fortified milk samples and analysed on a UHPLC-MS/MS with recoveries ranging from 74 to 114%. Validation of the UHPLC-MS/MS method at low (0.0020 mg kg−1) and high (0.0250 mg kg−1) concentration levels in line with SANTE/12682/2019 showed overall trueness in the range of 99 to 104% and precision between 1 and 10%, RSD for both compounds. The limit of quantitation (LOQ) was 0.0020 mg kg−1 and other tested parameters (linearity, sensitivity, specificity, matrix effect, robustness, etc.) satisfied acceptance criteria. Stability assessment using spiked samples revealed the compounds were stable in raw and pasteurised milk for 4 weeks at –80 °C storage temperature. Maintaining samples at pH 8.5–9.0 further improved stability. Analysis of 516 milk samples from the field study found that NBPT and NBPTo concentrations were below the LOQ of 0.0020 mg kg−1, thus suggesting very low risk of residues occurring in the milk. The method developed is quick, robust, and sensitive. The method is deemed fit-for-purpose for the simultaneous determination of NBPT and NBPTo in milk.  相似文献   

20.
Novel solvent-impregnated resins (SIRs) were prepared by treatment of styrene–divinylbenzene copolymer (LPS-500) with mixtures of the promising polydentante extractant (2-diphenylphosphoryl)-4-ethylphenoxy)methyl)diphenylphosphine oxide (L) and an ionic liquid [C4mim]+[Tf2N]for the extraction chromatography recovery of Nd(III) from nitric acid solutions. It was shown that introduction of the ionic liquid into the SIR composition results in considerable enhancement of the Nd(III) recovery efficiency compared with resin impregnated only by L in slightly acidic media. The influence of the L: ionic liquid molar ratio in the SIRs composition, their percentages, concentration of metal and HNO3 in the eluent, and acid type on the value of synergistic effect and adsorption efficiency of Nd(III) recovery was studied. The SIR containing 40% of mixture of L and [C4mim]+[Tf2N] with molar ratio 2:1 turned out to be the most efficient. The selectivity of Nd(III) separation from light and heavy rare-earth elements was studied and the optimal conditions of Nd(III) adsorption recovery and stripping by this SIR were chosen. It was found that in recovery efficiency of Nd(III) developed SIR exceeded the SIR containing Cyanex 923 (a mixture of monodentate trialkylphosphine oxides) and [C4mim]+[Tf2N].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号