首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Electronic,chemical bonding and optical properties of cubic Hf 3N4(c-Hf3N4) are calculated using the firstprinciples based on the density functional theory(DFT).The optimized lattice parameter is in good agreement with the available experimental and calculational values.Band structure shows that c-Hf3N4 has direct band gap.Densities of states(DOS) and charge densities indicate that the bonding between Hf and N is ionic.The optical properties including complex dielectric function,refractive index,extinction coefficient,absorption coefficient,and reflectivity are predicted.From the theory of crystal-field and molecular-orbital bonding,the optical transitions of c-Hf3N4 affected by the electronic structure and molecular orbital are studied.It is found that the absorptive transitions of c-Hf3N4 compound are predominantly composed of the transitions from NT22p valence bands to HfT2(dxy,dxz,dyz) conduction bands.  相似文献   

3.
Structures and electronic properties of the pentaerythritol (PE) crystal under volume compression up to 0.85V0 are studied by E - V fitting method using density functional theory (DFT). The compression dependences of the cell volumes, lattice constants, and molecular geometries of solid PE are presented and discussed. It is found that the solid PE presents anisotropy along a- and c-axes, and the c axis is the most compressible. Decreasing anisotropy ratio (c/a) with elevating compression suggests an enhancement of the vdW interaction with increasing compression. The C-C and C-H bonds are significantly reduced under compression, which may be related to the sensitivity. The solid PE has indirect band gap (X - G) in the range of the researched compression and the band gap is decreased with compression.  相似文献   

4.
The electronic structures of Ag-doped rutile and anatase Ti02 are studied by first-principles band calculations based on density functional theory with the full-potential linearized-augmented-plane-wave method. New occupied bands are found between the band gaps of both Ag-doped rutile and anatase TiO2. The formation of these new bands can be explained mainly by their orbitals of Ag 4d states mixed with Ti 3d states and are supposed to contribute to their visible light absorption.  相似文献   

5.
为了解VC的本征特性,本文采用第一原理计算的方法对VC晶体的力学性能和电子结构进行了研究。本文利用三种特殊应变计算了VC的弹性常数,推导出其力学常量及断裂强度;并根据电荷密度图、能带图和态密度图对VC的基本键合情况进行了研究。本研究表明VC具有高的弹性模量,延展性与TiC类似,刚度及断裂强度也较高;VC中的化学键可以归为共价键为主,兼有金属性、离子性的混合键。  相似文献   

6.
为了解VC的本征特性,本文采用第一原理计算的方法对VC晶体的力学性能和电子结构进行了研究。本文利用三种特殊应变计算了VC的弹性常数,推导出其力学常量及断裂强度;并根据电荷密度图、能带图和态密度图对VC的基本键合情况进行了研究。本研究表明VC具有高的弹性模量,延展性与TiC类似,刚度及断裂强度也较高;VC中的化学键可以归为共价键为主,兼有金属性、离子性的混合键。  相似文献   

7.
We studied the electronic structure of the two new transition-metal carbodiimides CoNCN and NiNCN using first-principles method, which is based on density-functional theory (DFT). The density of states (DOS), the total energy of the cell and the spin magnetic moment of CoNCN and NiNCN were calculated. The calculations reveal that the compound CoNCN and NiNCN have hall-metallic properties in ferromagnetic ground state, and the spin magnetic moment per molecule is about 7.000 μB and 6.000 μB for CoNCN and NiNCN, respectively.  相似文献   

8.
We studied the electronic structure of the two new transition-metal carbodiimides CoNCN and NiNCN using first-principles method, which is based on density-functional theory (DFT). The density of states (DOS), the total energy of the cell and the spin magnetic moment of CoNCN and NiNCN were calculated. The calculations reveal that the compound CoNCN and NiNCN havehalf-metallic properties in ferromagnetic ground state, and the spinmagnetic moment per molecule is about 7.000 μB and 6.000 μB for CoNCN and NiNCN, respectively.  相似文献   

9.
First-principles LMTO-ASA band calculations are performed for Ga1-xFexAs (x = 1, 1/4, 1/8) by assuming supercell structures. It is found that the antiferromagnetic (AFM) state is stable for x = 1/4. For x = 1/8, ferromagnetic(FM) state is more stable than AFM state, and no stable magnetic state exists for x = 1. In both the cases the magneticmoments of As and Ga atoms are parallel to those of the nearest Fe atoms due to the p-d hybridization. Further, theband structure shows rather localized Fe 3d state in the gap, and the parallel polarization is confined rather in thevicinity of Fe site.  相似文献   

10.
First-principles LMTO-ASA band calculations are performed for Ga1-xFezAs (x = 1, 1/4, 1/8) by assuming supercell structures. It is found that the antiferromagnetic (AFM) state is stable for x = 1/4. For x = 1/8, ferromagnetic (FM) state is more stable than AFM state, and no stable magnetic state exists for x = 1. In both the cases the magnetic moments of As and Ga atoms are parallel to those of the nearest Fe atoms due to the p-d hybridization. Fhrther, the band structure shows rather localized Fe 3d state in the gap, and the parallel polarization is confined rather in the vicinity of Fe site.  相似文献   

11.
The electronic and lattice structures of poly (phenylene vinylene) (PPV) are studied theoretically. Both the electron-electron and electron-phonon interactions are taken into account in the Pariser-Parr-Pople model. The electronic band and the lattice structure of the ground state and the polaronic state are calculated by means of the unrestricted Hartree-Fock method. In the ground state, there exist eight bands in PPV including four valence bands and four conduction bands, and the benzenes can be considered to be rigid. The polaron induces the split of energy bands. There are four localized electronic states within the energy gap. The defect of the polaron appears to extend over about 5 units. The benzenes are strongly affected by the electron-phonon interaction. Our calculation for the energy band structure of the ground and polaron states are consistent with experimental absorption spectra. The results of our calculation show that the electron-phonon and inter-site electron-electron interactions play an important role in determining the electronic and lattice structures.  相似文献   

12.
The electronic and lattice structures of poly (phenylene vinylene) (PPV) are studied theoretically. Both the electron-electron and electron-phonon interactions are taken into account in the Pariser-Parr-Pople model. The electronic band and the lattice structure of the ground state and the polaronic state are calculated by means of the unrestricted Hartree-Fock method. In the ground state, there exist eight bands in PPV including four valence bands and four conduction bands, and the benzenes can be considered to be rigid. The polaron induces the split of energy bands. There are four localized electronic states within the energy gap. The defect of the polaron appears to extend over about 5 units. The benzenes are strongly affected by the electron-phonon interaction. Our calculation for the energy band structure of the ground and polaron states are consistent with experimental absorption spectra. The results of our calculation show that the electron-phonon and inter-site electron-electron interactions play an important role in determining the electronic and lattice structures.  相似文献   

13.
Structural, elastic and electronic properties of tetragonal HfO2 at applied hydrostatic pressure up to 50 GPa have been investigated using the plane-wave ultrasoft pseudopotential technique based on the first-principles density-functional theory (DFT). The calculated ground-state properties are in good agreement with previous theoretical and experimental data. Six independent elastic constants of tetragonal HfO2 have been calculated at zero pressure and high pressure. From the obtained elastic constants, the bulk, shear and Young's modulus, Poisson's coefficients, acoustic velocity and Debye temperature have been calculated at the applied pressure. Band structure shows that tetragonal HfO2 is an indirect band gap. The variation of the gap versus pressure is well fitted to a quadratic function.  相似文献   

14.
基于密度泛函理论的第一性原理和特殊准随机近似方法,建立64原子的超胞并且对结构进行几何优化.计算和讨论具有闪锌矿结构的三元合金BxGa1-xAs的结构参数、电子结构和光学性质.结果表明:BxGa1-xAs的晶格常数与使用Vegard定理计算得到的值有微弱的偏离,键长存在明显的弛豫;计算得到的合金带隙弯曲参数变化较小(2.57 eV-5.01 eV)而且对组分变化的依赖很弱;最后分析硼的并入对GaAs光学参数包括介电函数、反射率、折射率、吸收系数和能量耗散函数的影响.  相似文献   

15.
The multiscale self-adaptivity of Voronoi basis functions is currently proving to be useful for the simulation of complex fluid systems involving structures on a number of distinct lengthscales. In this paper, we explore the possibility of extending the use of such multiscale basis functions to the framework of density functional theoretic electronic structure computations.  相似文献   

16.
本文通过基于密度泛函理论的第一性原理,研究了纤锌矿结构Al1-xInxN在不同In浓度下的稳固结构,以及电子和光学性质的变化规律。研究表明,AlInN不同In浓度的晶格结构都很稳定,说明AlInN的兼容性很好。晶格常数随In浓度的增大不断增大,而混晶的带隙则不断减小。并且随In浓度的增大,混晶在紫外光区的吸收系数、反射系数及折射率增大,吸收边、吸收峰和反射峰蓝移,且这两个峰的峰值减小。AlInN的吸收、反射和折射率曲线在Eg处出现峰值行为,此Eg处的峰值大小随In浓度的增加而增大。当In浓度达到87.5%时,混晶AlInN在紫外光区的吸收、反射和折射能力均达到最强,表明此时的掺杂效果最好。  相似文献   

17.
本文通过基于密度泛函理论的第一性原理,研究了纤锌矿结构Al1-xInxN在不同In浓度下的稳固结构,以及电子和光学性质的变化规律。研究表明,AlInN不同In浓度的晶格结构都很稳定,说明AlInN的兼容性很好。晶格常数随In浓度的增大不断增大,而混晶的带隙则不断减小。并且随In浓度的增大,混晶在紫外光区的吸收系数、反射系数及折射率增大,吸收边、吸收峰和反射峰蓝移,且这两个峰的峰值减小。AlInN的吸收、反射和折射率曲线在Eg处出现峰值行为,此Eg处的峰值大小随In浓度的增加而增大。当In浓度达到87.5%时,混晶AlInN在紫外光区的吸收、反射和折射能力均达到最强,表明此时的掺杂效果最好。  相似文献   

18.
蔡鲁刚 《计算物理》2018,35(3):350-356
基于密度泛函理论的广义梯度近似对畸形钙钛矿DyMnO3的基态电子结构及光学性质进行计算和分析.结果表明优化的晶体结构参数与实验结果相符合,DyMnO3具有非间接带隙大小为0.91 eV的能带结构,结合态密度分析了各元素价电子态的分布.计算分析包括介电常数,吸收系数,反射率等光学性质.  相似文献   

19.
基于密度泛函理论(DFT)和广义梯度近似(GGA),对氧钝化条件下4H-SiC纳米团簇的电子结构和光学性质进行了研究。计算了不同直径的4H-SiC纳米球氧钝化后的能带结构、电子态密度和光学性质。团簇的尺度在0.4~0.9 nm之间,构建表面仅存在硅氧双键和表面仅存在碳氧双键的两种模型。研究表明硅氧双键和碳氧双键所引起的缺陷态位于原4H-SiC的价带和导带之间,并且缺陷态与价带顶的能量差随纳米团簇颗粒直径的增大而减小;缺陷态主要是由Si原子外层电子和氧原子外层电子轨道杂化引起的。同时,由于氧的存在,对碳化硅的结构产生一定的影响,这也是缺陷态形成的一个原因。另外,碳氧双键和硅氧双键钝化对4H-SiC纳米团簇的光学性质有着不同的影响。在表面仅存在C=O的情况下,4H-SiC纳米团簇表现出各向同性的性质。在表面仅存在Si=O的情况下,4H-SiC纳米团簇表现出各向异性的性质。  相似文献   

20.
ZnO电子结构与光学性质的第一性原理计算   总被引:1,自引:0,他引:1  
计算了ZnO电子结构和光学线性响应函数,从理论上给出了ZnO材料电子结构与光学性质的关系。所有计算都是基于密度泛函理论框架下的第一性原理平面波超软赝势方法。利用精确计算的能带结构和态密度分析了带间跃迁占主导地位的ZnO材料的介电函数、反射谱、反射率以及消光率,理论结果与实验符合甚佳,为ZnO光电材料的设计与应用提供了理论依据。同时,计算结果也为精确监测和控制ZnO材料的生长过程提供了可能性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号