首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
H-ZSM-5 (Si/Al = 10.6 and 20) efficiently catalyzes the transformation of ethanol into C5-C12 gasoline hydrocarbons in 27–33 mass % yield at 320°C and feed rate 20 mmol C2H5OH/(gcat·h). Only ethylene is produced on the mesoporous zeolite H-ZSM-5/Al-MCM-41 with 100% ethanol conversion. This discrepancy may be attributed to blockage of the ZSM-5 micropores in the mesoporous zeolite structure.  相似文献   

2.
Two different types of supported silicalite membranes were employed for the separation of alcohols and alcohols/O2 mixtures: in one of them the zeolite material was deposited on the top of the γ-alumina supports, while in the other the zeolitic material was mainly present in the porous structure of the α-alumina supports. While both kinds of membranes were able to separate the above mixtures, the second type of membranes having the zeolite material inside the support performed more efficiently. The maximum selectivity reported in this work is 7415 for the ethanol/O2 separation in an ethanol/methanol/O2 mixture. For a better understanding of the separation mechanism, the performance of both zeolite membranes was compared to that of a mesoporous silica membrane. Also, the adsorption of methanol and propanol on silicalite crystals was measured using a microbalance.  相似文献   

3.
《Polyhedron》2005,24(5):685-691
The in situ measurements of infrared spectra and the Ag K-edge EXAFS spectra of the fully Ag+ exchanged zeolite X (Ag86–X) were carried out from room temperature to 300 °C under vacuum. By evacuation at room temperature the O–H stretch vibration (ν(O–H)) mode around 3 μm disappears and the coordination number of oxygen around Ag, NAg–O, decreases due to removal of water molecules. The T–O asymmetric stretch (νas(T–O)) mode associated with zeolite framework oxygen appears around 10 μm. These infrared spectra are fitted by summing up Gaussian peaks. The positions of the main two peaks are 1000 and 1100 cm−1 at room temperature. At 100 °C, a third infrared peak appears at around 955 cm−1, the total NAg–O becomes small and the coordination number of Ag around Ag, NAg–Ag, is 0.5. These results suggest that Ag atoms change sites in the zeolite and play an important role as a precursor of the Ag clusters. At 300 °C, the peaks around 1000 and 1100 cm−1 shift to 1050 and 1140 cm−1, respectively, and NAg–Ag becomes 2.9, which indicates that the Ag clusters attached to the zeolite framework are stabilized at high temperature. When the zeolite with Ag clusters is exposed to atmosphere, it is found that: (1) the ν(O–H) mode around 3 μm appears again, (2) there are two main peaks (1000 and 1100 cm−1) and a small peak around 856 cm−1 and (3) the local structure of the Ag clusters formed at 300 °C never reverses.  相似文献   

4.
Carbon deposition during methanol to hydrocarbons leads to the quick deactivation of ZSM-5 catalyst and it is one of the major problems for this technology. Decreasing the crystal size or introducing mesopores into ZSM-5 zeolites can improve its diffusion property and decrease the coke formation. In this paper, nano-sized ZSM-5 zeolite with intercrystalline mesopores combining the mesoporous and nanosized structure was fabricated. For comparison, the mesoporous ZSM-5 and nano-sized ZSM-5 were also prepared. These catalyst samples were characterized by XRD, BET, NH3-TPD, TEM, Py-IR and TG techniques and used on the conversion of methanol to gasoline in a fixed-bed reactor at T = 405 °C, WHSV = 4.74 h-1and P = 1.0 MPa. It was found that the external surface area of the nano-sized ZSM-5 zeolite with intercrystalline mesopores reached 104 m2/g, larger than that of mesoporous ZSM-5(66 m2/g) and nanosized ZSM-5(76 m2/g). Catalytic lifetime of the nano-sized ZSM-5 zeolite with intercrystalline mesopores was 93 h, which was only longer than that of mesoporous ZSM-5(86 h), but shorter than that of nanosized ZSM-5(104 h). Strong acidity promoted the coke formation and thus decreased the catalytic lifetime of the nano-sized ZSM-5 zeolite with intercrystalline mesopores though it presented large external surface that could improve the diffusion property. The special zeolite catalyst was further dealuminated to decrease the strong acidity. After this, its coke formation rate was slowed and catalytic lifetime was prolonged to 106 h because of the large external surface area and decreased weak acidity. This special structural zeolite is a potential catalyst for methanol to gasoline reaction.  相似文献   

5.
碱溶液处理NaY分子筛形成的介孔有利于反应物及产物分子的扩散,调节碱溶液浓度可控制Y分子筛中的介孔结构,通过溶液离子交换法制备CuY催化剂,研究了NaY分子筛介孔结构调变对CuY催化剂催化甲醇氧化羰基化反应活性的影响。通过BET、~(29)Si-NMR、XRD、NH_3/CO-TPD、H_2-TPR和TEM等表征及催化活性分析表明,在碱溶液处理过程中,NaY分子筛骨架中的Si(0Al)和Si(1Al)原子被优先脱除,且笼结构坍塌使得临近超笼连接,逐步形成直径为3.47~3.66 nm,孔容介于0.142~0.226cm~3·g~(-1)的介孔,在提高反应物分子和产物分子扩散性能的同时,提高了活性物种的可接近性。随着碱液浓度的增加,CuY催化剂的催化活性先升高后降低。当碱液浓度为0.2 mol·L~(-1)时,NaY分子筛介孔直径为3.47 nm,孔容达到最大(0.226 cm~3·g~(-1)),相应CuY催化剂DMC的时空收率、选择性和甲醇转化率分别达到204.0 mg·g~(-1)·h~(-1)、67.8%和14.0%,活性最佳。  相似文献   

6.
By using an automatic adiabatic calorimeter the heat capacity measurements in the temperature range of 220—320K for H2O/NaY zeolite adsorption system with various amounts of adsorbed water have been made. In cp-T curves obtained, there is no peak for solid-liquid phase transition of the adsorbed water. But for H2O-NaY zeolite system which consists of a saturated H2O/NaY adsorption system mixed mechanically with a certain amount of water, there are distinct peaks in their cp-T curves. The peak in the cp-T curve disappeared as soon as the mixed water in the latter system was evacuated. The facts mentioned above have been discussed from the point of view of the structure of the adsorbed layer and the pore size of zeolite.  相似文献   

7.
Hybridization of visible‐light‐responsive metal complexes with solid matrices offers an attractive route for practical catalyst design of nanostructured photocatalysts that are operationally simple and can attain unprecedented reactions owing to synergistic effects. This Minireview highlights the precise architectures of hybrid photocatalysts that enable efficient and selective photochemical molecular transformations, including selective oxidation by O2 and H2 evolution from water. Several techniques for the immobilization of metal complexes are discussed, including encapsulation within zeolite cavities, anchoring within mesoporous channels, incorporation within the macroreticular space of ion‐exchange resins, intercalation within the interlayer spaces of layered materials, and anchoring onto the plasmonic colloidal Ag nanoparticles. The relationships between photoluminescence characteristics and photocatalytic activities of these hybrid materials are also discussed.  相似文献   

8.
Hierarchical porous materials with zeolite structures show great promise in catalysis due to combining the advantages of zeolites and mesoporous materials. Here a novel template-free sol–gel method is developed to synthesize hierarchical porous silica materials. This method involves solvothermal recrystallization of the xerogel converted from uniform silicalite-1 precursor sol via vacuum drying process. The zeolite sol and the solid samples were characterized by laser light scattering, XRD, N2 adsorption/desorption isotherm, FTIR, SEM, TEM and thermal analysis technologies. The results show that we obtain two novel materials with different mesoporous structures and silicalite-1 walls by using different recrystallization media, one of which has irregular arrays of mesopores, the other possesses 3D wormhole mesoporous structure. We speculate that formation of different mesoporous structures results from different nucleation and growth process of materials  相似文献   

9.
A systematic study of the diffusion mechanism of CO2 in commercial 13X zeolite beads is presented. In order to gain a complete understanding of the diffusion process of CO2, kinetic measurements with a zero length column (ZLC) system and a volumetric apparatus have been carried out. The ZLC experiments were carried out on a single bead of zeolite 13X at 38 °C at a partial pressure of CO2 of 0.1 bar, conditions representative of post-combustion capture. Experiments with different carrier gases clearly show that the diffusion process is controlled by the transport inside the macropores. Volumetric measurements using a Quantachrome Autosorb system were carried out at different concentrations. These experiments are without a carrier gas and the low pressure measurements show clearly Knudsen diffusion control in both the uptake cell and the bead macropores. At increasing CO2 concentrations the transport mechanism shifts from Knudsen diffusion in the macropores to a completely heat limited process. Both sets of experiments are consistent with independent measurements of bead void fraction and tortuosity and confirm that under the range of conditions that are typical of a carbon capture process the system is controlled by macropore diffusion mechanisms.  相似文献   

10.
Photovoltaic cells composed of thin mesoporous polyaniline films sandwiched between an indium-tin oxide anode and aluminium cathode have been fabricated. The cells show an increase in the photo-generated open-circuit voltage (V oc) from 0.2 V to 0.6 V and stable-in-time V oc generation following the addition of water containing highly hydrated ions, e.g. tap water.We explain the waterpromoted photo-voltaic effect by the polarity of the water environment. Theoretical calculations show that increasing the solvent polarity increases the energy of the electronic transition related to the measured V oc. The stable-in-time V oc generation could be explained by the increase in the lifetime of the excitons as well as by their more efficient dissociation in the interpenetrating network of polyaniline and water. The penetration of water into the mesoporous polyaniline films is promoted by the presence of highly hydrated ions.  相似文献   

11.
ZSM-5 zeolite nanoboxes with accessible meso-micro-pore architecture and strong acid sites are important in relevant heterogeneous catalysis suffering from mass transfer limitations and weak acidities. Rational design of parent zeolites with concentrated and non-protective coordination of Al species can facilitate post-synthetic treatment to produce mesoporous ZSM-5 nanoboxes. In this work, a simple and effective method was developed to convert parent MFI zeolites with tetrahedral extra-framework Al into Al-enriched mesoporous ZSM-5 nanoboxes with low silicon-to-aluminium ratios of ≈16. The parent MFI zeolite was prepared by rapid ageing of the zeolite sol gel synthesis mixture. The accessibility to the meso-micro-porous intra-crystalline network was probed systematically by comparative pulsed field gradient nuclear magnetic resonance diffusion measurements, which, together with the strong acidity of nanoboxes, provided superb catalytic activity and longevity in hydrocarbon cracking for propylene production.  相似文献   

12.
Hydrophobic faujasite-type zeolites were prepared by the treatment of hydrophilic Na-Y4.6 with silicon tetrachloride (SiCl4) by way of dealumination-silicon exchange reaction. Hydrophilic-hydrophobic characters of these zeolite surfaces were evaluated by measurements of immersional heats into water orn-hexane. Adsorption rates of sodium dodecylsulfate (SDoS) on these zeolites from its aqueous solution and their adsorption characteristics were investigated, and compared with those on ZSM-5 with various Si/Al ratios.The adsorption ability of SDoS into zeolite micropores developed on the zeolite only when it was modified to some extent. The adsorption rates of SDoS were very slow and proved to be affected by molecular diffusion in zeolite pores. They depended on hydrophilic-hydrophobic character of zeolites as well as on pore structures. Adsorption isotherms of SDoS were of Langmuir type, which indicates that the adsorption occurred typically into zeolite pores. Adsorbed amount of SDoS depended on the balance of hydrophilic-hydrophobic character and number of cation site of zeolite surfaces, and had a maximum in case of ZSM-5 zeolites.  相似文献   

13.
The rapid development of internet and internet of things brings new opportunities for the expansion of intelligent sensors,and acetone as a major disease detection indicator(i.e.,diabetes) making it become extremely important clinical indicator.Herein,uniform mesoporous ZnO spheres were successfully synthesized via novel formaldehyde-assisted metal-ligand crosslinking strategy.In order to adjust the pore structure of mesoporous ZnO,various mesoporous ZnO spheres were synthesized by changing weight percentage of Zn(NO_3)_2·6 H_2 O to tannic acid(TA).Moreover,highly active heterojunction mesoporous ZnO/Co_3 O_4 has been fabricated based on as-prepared ultra-small Co_3 O_4 nanocrystals(ca.3 nm) and mesoporous ZnO spheres by flexible impregnation technique.Profit from nano-size effect and synergistic effect of p-n heterojunction,mesoporous ZnO/Co_3 O_4 exhibited excellent acetone sensing performance with high selectivity,superior sensitivity and responsiveness.Typically,5 wt% Co_3 O_4 embedded mesoporous ZnO sphere showed prominent acetone response(ca.46 for 50 ppm),which was about 11.5 times higher than that in pure ZnO sensing device,and it was also endowed high cyclic stability.The nanocrystals embedded hybrid material is expected to be used as promising efficient material in the field of catalysis and gas sensing.  相似文献   

14.
A series of core–shell‐structured composite molecular sieves comprising zeolite single crystals (i.e., ZSM‐5) as a core and ordered mesoporous silica as a shell were synthesized by means of a surfactant‐directed sol–gel process in basic medium by using cetyltrimethylammonium bromide (CTAB) as a template and tetraethylorthosilicate (TEOS) as silica precursor. Through this coating method, uniform mesoporous silica shells closely grow around the anisotropic zeolite single crystals, the shell thickness of which can easily be tuned in the range of 15–100 nm by changing the ratio of TEOS/zeolite. The obtained composite molecular sieves have compact meso‐/micropore junctions that form a hierarchical pore structure from ordered mesopore channels (2.4–3.0 nm in diameter) to zeolite micropores (≈0.51 nm). The short‐time kinetic diffusion efficiency of benzene molecules within pristine ZSM‐5 (≈7.88×10?19 m2 s?1) is almost retainable after covering with 75 nm‐thick mesoporous silica shells (≈7.25×10?19 m2 s?1), which reflects the greatly opened junctions between closely connected mesopores (shell) and micropores (core). The core–shell composite shows greatly enhanced adsorption capacity (≈1.35 mmol g?1) for large molecules such as 1,3,5‐triisopropylbenzene relative to that of pristine ZSM‐5 (≈0.4 mmol g?1) owing to the mesoporous silica shells. When Al species are introduced during the coating process, the core–shell composite molecular sieves demonstrate a graded acidity distribution from weak acidity of mesopores (predominant Lewis acid sites) to accessible strong acidity of zeolite cores (Lewis and Brønsted acid sites). The probe catalytic cracking reaction of n‐dodecane shows the superiority of the unique core–shell structure over pristine ZSM‐5. Insight into the core–shell composite structure with hierarchical pore and graded acidity distribution show great potential for petroleum catalytic processes.  相似文献   

15.
Probing the mesopore architecture in mesoporous zeolites is of importance for large scale applications of the materials. In this work, the adsorption and diffusion of mesitylene with larger molecule size in mesoporous ZSM-5 zeolites were carried out, in order to acquaint the availability and interconnectivity of mesopores in zeolite crystals. The comparisons of the shape of adsorption isotherms and the mesopore volume calculated from mesitylene and N2 adsorption in mesoporous ZSM-5 zeolites with different mesoporosities can be used to discriminate two cases of mesopores: accessible mesopores connected to external surface of the zeolite crystals and non-accessible meso-voids that are occluded in the microporous matrix. Furthermore, the effective diffusivity and activation energy of mesitylene in mesoporous ZSM-5 extracted from ZLC desorption curves as a function of mesopore volume calculated from mesitylene adsorption reveal the enhancement of mesopore interconnectivity to molecule diffusion in zeolite crystals.  相似文献   

16.
Diffusion properties of mesostructured zeolite 5A were investigated by employing n-alkanes as probe molecules using the zero length column (ZLC) method. The mesopores were found to enhance molecule diffusion. Moreover, the effective diffusion time constant (D eff/R 2) increased with mesoporosity in the zeolites between 308 K and 393 K, whereas the activation energy decreased with increasing mesopore volume. The effective diffusivity values of n-alkanes in mesoporous zeolite 5A were generally higher than that the microporous zeolite 5A sample. This clearly implied the important role of the mesopore in zeolites crystals in facilitating the transport of reaction molecules due to shorter average diffusion path length and less steric hindrance.  相似文献   

17.
Nan Sun  Weimin Mo  Baoxiang Hu  Xinquan Hu 《Tetrahedron》2010,66(35):7142-7148
A general procedure for the preparation of mono-N-methyl anilines has been developed with excellent yields. This protocol relies on a NaBH3(OAc) reduction of formimidate intermediates that are quantitatively generated by treatment of primary substituted anilines with triethyl orthoformate under the catalysis of MCM-41-SO3H mesoporous zeolite. The newly developed procedure was facile, efficient, and environmentally benign.  相似文献   

18.
《Chemical physics》1987,116(2):193-202
Hydrated Be2+ ions [Be(H2O)n]2+, n = 1−4 and 6, were examined theoretically. The structure of the hydrated ions was determined and the hydration energy estimated with and without electron correlation. The bond between the Be2+ ion and the oxygen of water is very strong and has the nature of a dative bond. The non-additivity of the binding energy is so profound that without taking it into account the structure and dynamics of Be2+ ions cannot be explained. The hydration number in water is found to be 4. The fifth and sixth water molecules prefer forming the second coordination shell to the Be2+ ion. The result is in agreement with X-ray analysis of the aqueous solution, but not with a recent molecular dynamics simulation. In addition, the harmonic vibrational frequencies for the complexes are evaluated and compared with some experiments.  相似文献   

19.
In this paper, nine beads from excavations in the Valongo Wharf, located in the harbor area of Rio de Janeiro, Brazil that were utilized as ornaments by Africans and Afrodescendants during the 19th century were analyzed by Raman and X-Ray Fluorescence (XRF) spectroscopy. All samples in the analysis showed Raman spectra with two bands of maximum intensity around 1000 and 500 cm−1 related to the maximum stretching (νmax) and bending mode (δ), respectively, of the tetrahedral network of the SiO4 present in the glass matrix. However, there is variation in the intensity and position of the bands that are directly associated with the burning process and the raw material utilized in the manufacture of the beads. Based on the polymerization index (Ip = A500/A1000), it is possible to relate these two parameters. By establishing a correlation among the Ip and the νmax band, the beads were classified into groups. The results reveal that the beads’ base paste exhibits differences, allowing their classification into groups according to the manufacturing process. Based on the combination of the elemental characterization and Raman spectroscopy results, it was also possible to conclude that European and Asian countries are the possible origins of the beads.  相似文献   

20.
We reported a facile and efficient solution-based route to prepare novel flowerlike α-FeOOH architectures without any template or surfactant. Scanning electron microscope (SEM) images reveal that leaf-like nanosheets with a thickness about 40 nm assembled into flowerlike superstructures. On the basis of time-dependent experiments, a multistage reaction mechanism for the formation of the flowerlike α-FeOOH was proposed. After heat treatment, the flowerlike α-FeOOH could be converted into corresponding mesoporous α-Fe2O3. Transmission electron microscopy (TEM) images and porosity analysis showed that the nanosheets have porous walls with a pore size of about 7 nm. As a demonstration of potential application for gas-sensing materials, the mesoporous α-Fe2O3 nanostructures exhibited short response/recovery time within 5/10 s, and low response concentration of 1 ppm toward acetone vapors. Large specific surface area and mesoporous structure should be beneficial for the sensing properties of α-Fe2O3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号