首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, highly photoactive BiOI nanoparticles (NPs) under sunlight irradiation were synthesized by a facile precipitation method using polyvinylpyrrolidone (PVP) at room temperature. The as‐prepared catalysts were characterized by X‐ray diffraction (XRD), scanning electron microscopy (SEM), transition electron microscopy (TEM), energy‐dispersive X‐ray spectroscopy (EDX), Fourier transform infrared (FTIR) and UV–vis diffuse reflectance spectra (UV–vis DRS). The results of XRD showed that PVP did not have any significant effect on tetragonal crystalline structure of BiOI. Also, using different amounts of PVP in the synthesis led to different morphologies and sizes of BiOI particles. It was found that using 0.2 g of PVP in the synthesis method changed morphology from 1‐μm platelets to NPs with size under 10 nm. In addition, the photocatalytic performance of prepared photocatalysts was evaluated in the photodegradation of reactive blue 19 (RB19) dye under sunlight irradiation. The BiOI synthesized using 0.2 g PVP (BiOI0.2) showed higher degradation efficiency compared to BiOI prepared without any additive. Excellent visible light photocatalytic properties of nano‐scaled BiOI0.2 samples compared to BiOI platelets could be attributed to higher surface‐to‐volume ratio and narrow band‐gap energy of as‐prepared BiOI0.2 NPs.  相似文献   

2.
采用水热法将碘氧化铋(BiOI)负载到锌镁铝类水滑石(ZnMgAl-HTLCs)上制备得到BiOI/ZnMgAl-HTLCs可见光催化剂。 通过X射线衍射仪(XRD)、扫描电子显微镜(SEM)、傅里叶变换红外光谱仪(FTIR)等技术手段考察了BiOI负载质量分数、反应温度、反应时间及加料顺序等因素对BiOI/ZnMgAl-HTLCs光催化剂结构及形貌的影响。 结果表明,在制备BiOI/ZnMgAl-HTLCs材料中先加入锌镁铝类水滑石,负载质量分数为40%的BiOI,反应温度为140 ℃,反应时间为24 h,可以得到结晶度高和形貌较好的BiOI/ZnMgAl-HTLCs。  相似文献   

3.
Heterojunction BiOI/SnO2 nanocomposites have been facilely synthesized by using successive ionic layer adsorption and reaction (SILAR) and a hydrothermal method, and polyethylene terephthalate (PET) nanofibers (NFs) were utilized as a photocatalyst carrier to support the BiOI/SnO2 nanocomposites. PET/BiOI/SnO2 NFs displayed excellent photocatalytic ability towards methyl orange (MO) and tetracycline (TC) under visible light irradiation. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were employed to investigate the morphology, crystal structure and chemical state of the PET/BiOI/SnO2 nanofibers. Photoluminescence (PL) and active species trapping experiments indicated that photoinduced charge separation promoted the formation of holes (h+) and superoxide radicals (•O2-). Moreover, a photodegradation mechanism was proposed to illustrate that the formation of a Fermi level equilibrium state between semiconductors accelerated charge separation in the semiconductor. This study is meaningful for providing new inspiration to design and fabricate novel heterostructure photocatalysts with enhanced photocatalytic activity.  相似文献   

4.
Photocatalysis has recently been regarded as one of the most viable technologies for water treatment. Scholars all over the world are focusing on nanocomposites for water treatment for efficient and effective sanitization of bodies of water. Because of their high surface area, high chemical reactivity, excellent mechanical strength, low cost, and nanoscale composite materials have enormous potential to purify water in a various way. In this study, n-type TiO2 was synthesized and tailored to produce a TiO2/BiOI n–p nanocatalyst for enhanced photodegradation of 2,4-dinitrophenol (2,4-DNP) under UV-A and solar light respectively. Because of the formation of a heterojunction between BiOI and TiO2, the photocatalytic activity in TiO2/BiOI absorbs strongly in both the UV and visible regions and it has a lower recombination rate of the e-/h+ pairs. Furthermore, the generation of OH?, O2?– radicals during the oxidation process is attributed to the photodegradation of 2,4-DNP. The results revealed that the TiO2/BiOI manifest outperformed BiOI and TiO2 in terms of photocatalytic function. XRD, BET, HR-SEM-EDX with ECM, HR-TEM, FT-IR, PL, and UV-DRS techniques determined the photocatalyst composition. The HR-SEM images clearly showed that the particles are less than 27 ?nm in size. Thus, nanocomposite materials have played an important role in water purification.  相似文献   

5.
以硫代乙酰胺为硫源,采用水热阴离子转移法,制备由纳米片组装的花球状Bi2S3/BiOI复合光催化剂。以气相甲醛作为模型污染物,在检测舱中考察了复合催化剂对甲醛的去除作用。结果表明,具有异质结结构的Bi2S3/BiOI复合光催化剂具有较高的光催化活性,能在可见光下去除空气中的甲醛,并且具有良好的循环使用稳定性。  相似文献   

6.
采用简单的沉积方法制备了不同碘化氧铋含量的BiOI/Bi2WO6光催化剂,通过X射线衍射(XRD)、扫描电子显微镜(SEM)、高分辨透射电子显微镜(HR-TEM)、紫外-可见漫反射光谱(UV-VisDRS)和BET比表面积测量对其进行了表征。在紫外和可见光的照射下,使用甲基橙和苯酚的光催化降解评价了BiOI/Bi2WO6催化剂的光催化性能。结果表明:与商业P25和纯Bi2WO6相比,13.2%BiOI/Bi2WO6光催化剂具有更高的紫外和可见光催化性能。这明显增加的光催化活性主要归功于光生电子和空穴在Bi2WO6和BiOI界面上的有效转移,降低了电子-空穴对的复合。基于BiOI和Bi2WO6的能带结构,提出了光生载流子的一种转移过程。自由基清除剂的实验表明,OH,h+,O2和H2O2,特别是h+,共同支配了甲基橙和苯酚的光催化降解过程。  相似文献   

7.
A magnetized nano‐photocatalyst based on TiO2/magnetic graphene was developed for efficient photodegradation of crystal violet (CV). Scanning electron microscopy, X‐ray diffraction, energy‐dispersive X‐ray spectroscopy and elemental mapping were used to characterize the prepared magnetic nano‐photocatalyst. The photocatalytic activity of the synthesized magnetic nano‐photocatalyst was evaluated using the decomposition of CV as a model organic pollutant under UV light irradiation. The obtained results showed that TiO2/magnetic graphene exhibited much higher photocatalytic performance than bare TiO2. Incorporation of graphene enhanced the activity of the prepared magnetic nano‐photocatalyst. TiO2/magnetic graphene can be easily separated from an aqueous solution by applying an external magnetic field. Effects of pH, magnetized nano‐photocatalyst dosage, UV light irradiation time, H2O2 amount and initial concentration of dye on the photodegradation efficiency were evaluated and optimized. Efficient photodegradation (>98%) of the selected dye under optimized conditions using the synthesized nano‐photocatalyst under UV light irradiation was achieved in 25 min. The prepared magnetic nano‐photocatalyst can be used in a wide pH range (4–10) for degradation of CV. The effects of scavengers, namely methanol (OH? scavenger), p‐benzoquinone (O2?? scavenger) and disodium ethylenediaminetetraacetate (hole scavenger), on CV photodegradation were investigated.  相似文献   

8.
In this paper, we successfully fabricate a stable and highly efficient direct sunlight plasmonic photocatalyst Ag-AgBr through a facile hydrothermal and subsequently sunlight-induced route. The diffuse reflectance spectra of Ag-AgBr indicate strong absorption in both UV and visible light region. The obtained photocatalyst shows excellent sunlight-driven photocatalytic performance. It can decompose organic dye within several minutes under direct sunlight irradiation and maintain a high level even though used five times. In addition, both the scanning electron microscopy images and X-ray photoelectron spectroscopy dates reveal the as-prepared photocatalyst to be very stable. Moreover, the mechanism suggests that the high photocatalytic activity and excellent stability result from the super sensitivity of AgBr to light, the surface plasmon resonance of Ag nanoparticles in the region of visible light, and the complexation between Ag(+) and nitrogen atom. Thus, the facile preparation and super performance of Ag-AgBr will make it available to utilize sunlight efficiently to remove organic pollutants, destroy bacteria, and so forth.  相似文献   

9.

Abstract  

Nanocomposites consisting of titania nanoparticles and metallic platinum were prepared via a soft chemical reduction method. The detailed structural, compositional, and optical characterization and physicochemical properties of the obtained products were analyzed by X-ray diffraction, nitrogen adsorption, Raman spectroscopy, UV–Vis diffuse reflectance spectroscopy, photoluminescence spectroscopy, and FT-IR spectroscopy techniques. Employing photodegradation of rhodamine B as the model reaction, we found that the as-prepared Pt/TiO2 nanocomposite showed an excellent photocatalytic oxidation activity under visible light irradiation. On the basis of these results, the intrinsic mechanism of visible light-induced photocatalytic oxidation of organic compounds on the platinized titania is proposed and discussed. The superior visible light-driven photocatalytic efficiency of the Pt/TiO2 nanocomposite photocatalyst can be ascribed to the high efficiency of charge-pair separation due to the presence of deposited Pt serving as electron sinks to retard the rapid e–h+ couple recombination; the good photoabsorption capacity in the visible light region; and the higher concentration of surface hydroxyl groups, which are able to effectively scavenge photogenerated valence band holes. Accumulation of the holes at the catalyst surface increases the probability of the formation of OH· as a reactive species that readily oxidizes the organic dye molecule.  相似文献   

10.
Antibiotics, once being released into the environment, become recalcitrant organic pollutants, which pose a potential risk to ecological balance and human health. In this study, a Z-scheme heterojunction of bismuth oxyiodide (BiOI)/exfoliated g-C3N4 (BiOI/ECN hereafter) was synthesized by the combination of thermal exfoliation of g-C3N4 and chemical precipitation of BiOI for efficient photocatalytic degradation of tetracycline in aqueous solutions under visible light irradiation. The optimized BiOI/ECN delivered an outstanding degradation rate at circa 0.0705 min?1, which was 10 times higher than that of the bulk g-C3N4. The photocatalytic degradation efficiency of tetracycline remained almost unchanged in a pH range of 3–11, and the BiOI/ECN displayed an excellent photostability upon recycled usage. The photocatalytic mechanism of tetracycline was ascribed to the main reactive oxidation species of photogenerated holes and superoxide radicals. In addition, the possible degradation pathways of tetracycline were investigated by HPLC-MS to identify intermediates. The toxicity of photocatalytic-generated intermediates of tetracycline was found significantly alleviated according to the calculation of quantitative structure–activity relationship prediction. This work not only provides an attractive photocatalyst for the removal of tetracycline but also opens a new avenue for rational design of Z-scheme heterojunction composites for tetracycline degradation.  相似文献   

11.
Contamination of industrial sewage by organic dye pollutants is one of the most common challenges to the daily life. Decontamination can be achieved by adsorption and photodegradation of the pollutants. Herein, an effective visible light‐driven photocatalyst of polyoxometalate encapsulated in metal–organic gel was presented. The resulting composite was named PMA@ MOG‐Cr [PMA= H3PMo12O40, MOG= metal‐organic gel]. Photodegradation of dye pollutants with PMA@ MOG‐Cr were tested. The introduction of Phosphomolybdic Acid significantly enhanced the light‐absorption properties of MOG‐Cr. The PMA@MOG‐Cr showed an excellent photodegradation efficiency of MB, RhB and MO as high as 99% and 97% in 60 min and 91% in 120 min of visible‐light irradiation with only 10 mg photocatalyst, which was the highest among the tested samples MOG‐Cr, PMA@ MOG‐Cr and Degussa P‐25. The mechanism of the photodegradation of dye pollutants with H2O2 over PMA@MOG‐Cr under the visible light was further illustrated. The introduction of PMA promotes effective separation of electron–hole pair by trapping and transferring photogenerated electron. Thus, the two components act in synergy to result in much improved adsorption of certain common organic dyes as well as enhanced oxidative degradation. This work provides a new approach to design MOG encapsulated Polyoxometalate for visible light‐induced photodegradation of organic contaminants for the environmental remediation.  相似文献   

12.
Bismuth oxychloride (BiOI) has a good visible light responsive property due to their relatively narrow band gap, and its photocatalytic performance was further improved by doping ytterbium ions (Yb3+). This may be due to strong optical absorption in UV–visible light, effective separation of the photoinduced electron-hole pairs, and the capacity to up-convert Near-IR light into visible-light of Yb3+ ions. In this study, a facile solvothermal method was adopted to synthesize Yb3+ ions doped BiOI photocatalysts. The doped photocatalysts with molar ratios of 0, 0.5, 1, 1.5, 2 and 2.5% Yb3+ ions were prepared. The 2% Yb3+ ions doped BiOI exhibited the highest photocatalytic degradation efficiency on degrading Rhodamine B, which was two times higher than that of pure BiOI. Also Yb3+ ions doped BiOI showed high photocatalytic degradation on herbicide isoproturon. The prepared photocatalysts were characterized by SEM, XRD, UV–vis DRS. It indicated that the doping ions entered the lattice of BiOI crystals and improved the photocatalytic performance. The photocatalytic mechanism was also studied. This work provided the potential application of Yb3+ doped BiOI for the degradation of organic contaminants.  相似文献   

13.
采用简单的沉积方法制备了不同碘化氧铋含量的BiOI/Bi2WO6光催化剂,通过X射线衍射(XRD)、扫描电子显微镜(SEM)、高分辨透射电子显微镜(HR-TEM)、紫外-可见漫反射光谱(UV-Vis DRS)和BET比表面积测量对其进行了表征。在紫外和可见光的照射下,使用甲基橙和苯酚的光催化降解评价了BiOI/Bi2WO6催化剂的光催化性能。结果表明:与商业P25和纯Bi2WO6相比,13.2%BiOI/Bi2WO6光催化剂具有更高的紫外和可见光催化性能。这明显增加的光催化活性主要归功于光生电子和空穴在Bi2WO6和BiOI界面上的有效转移,降低了电子-空穴对的复合。基于BiOI和Bi2WO6的能带结构,提出了光生载流子的一种转移过程。自由基清除剂的实验表明,·OH,h+,·O2-和H2O2,特别是h+,共同支配了甲基橙和苯酚的光催化降解过程。  相似文献   

14.
It is highly desirable to exploit semiconductor materials with high photocatalytic degradation activity, especially bismuth oxyhalide semiconductor photocatalysts with special layered structure and suitable bandgap width. The low utilization rate of visible light and high recombination rate of photogenerated electron-hole of BiOI photocatalyst severely restrict its development. Herein, a heterojunction photocatalyst of α-Bi2O3-BiOI hollow nanotube was prepared by electrospinning method, solvothermal method and ion-exchange method. The α-Bi2O3-BiOI(BB-4, the stirring time of Bi2O3 in KI solution was 4 h) exhibited the best photocatalytic performance towards degrading the tetracycline hydrochloride(TC) solution, which could remove 85% of TC(10 mg/L) in 2 h under visible light irradiation. The estimated kTC of α-Bi2O3-BiOI(BB-4) was ca. 3.9 and 1.8 times as much as that of α-Bi2O3 and pure BiOI, respectively. It indicated that the formation of α-Bi2O3-BiOI heterojunction can significantly improve the separation efficiency of photogenerated electron-hole pairs, therefore the photocatalytic ability was enhanced. Furthermore, a corresponding photocatalytic mechanism was proposed that ·O2- radical and holes are the main active components in the photodegradation through trapping experiment.  相似文献   

15.
Exploring noble‐metal‐free, highly active and durable catalysts is vital to get to grips with the energy and environmental issues. Herein, we first dexterously design and synthesize a class of ternary Nb6/CZS/g‐CN photocatalysts for the removal of hexavalent chromium Cr (VI) and organic dye pollutant (MO) from wastewater under visible‐light irradiation. A heterojunction Nb6–1/CZS/g‐CN loaded with 0.01 g K7HNb6O19 showed excellent photocatalytic performance, with the MO photodegradation efficiency of 94% in 1 h and the Cr (VI) (150 mg/l) photoreduction efficiency as high as 91% in 2 hr. The main active species were deemed to be O2.‐. Additionally, the as‐prepared ternary heterojunction exhibits superior hydrogen evolution reaction (HER) rate. A heterojunction Nb6–4/CZS/g‐CN loaded with 0.5 g K7HNb6O19 exhibited the highest H2 evolution rate as high as 1777.86 μmol h?1 g?1 under visible‐light illumination, which is increased to 5.7 and 2.7 times that of bare CZS and biphase heterojunction CZS/g‐CN. These findings afford a new class of promising low‐cost photocatalyst bodying for its huge potential value in sustainable energy development and wastewater treatment.  相似文献   

16.
采用沉积-沉淀法将AgI分散到TiO2酸蚀纳米带上,然后通过光照进而分解出Ag颗粒,最终获得了Ag@AgI等离子体负载的TiO2酸蚀纳米带(AIST)。利用UV-Vis吸收光谱、XRD、SEM对产物进行表征,并研究了可见光下对甲基橙(MO)的光催化降解性能。结果表明,纳米带酸蚀后利于AgI的沉积,Ag的表面等离子体共振效应可以增强催化剂对于可见光的吸收,使可见光下AIST的光催化降解性能显著提高。  相似文献   

17.
Solar photocatalytic water treatment has emerged as a promising way to provide clean water. However, most traditional photocatalysts (TiO2, ZnO, etc.) are active only under ultraviolet light and have high recombination rates of photoinduced electron-hole pairs; therefore, they are not sufficient to fulfill all of the demands of practical applications. This problem could be overcome by developing highly solar-light-active and durable heterostructured photocatalysts. In this study, a new solar-light-active heterostructured reduced graphene oxide (RGO)/BiOI/AgI photocatalyst was successfully fabricated through a simple precipitation method. The resultant heterostructured RGO/BiOI/AgI nanocomposite exhibited extraordinary photocatalytic performance in the degradation of rhodamine B (RhB) under simulated sunlight irradiation. The measured rate constant of the RGO/BiOI/AgI nanocomposite was six times higher than that of bare BiOI nanostructures. Its extraordinary capacity for harvesting full-spectrum light and long-term stability makes the RGO/BiOI/AgI nanocomposite a potential photocatalyst for environmental remediation.  相似文献   

18.
异质结构光催化剂为实现高效的电荷分离,提高光催化性能提供了一种有效的途径.虽然宽禁带和窄禁带光催化剂已经得到了广泛的研究,但它们在接触界面上的电荷分离和转移规律尚未完全揭示.本文采用简便的方法成功地制备了一种新型SrTiO3/BiOI(STB)异质结构光催化剂.该光催化剂中的异质结构可以将光吸收扩展到可见光范围,从而在可见光照射下获得较高的光催化NO去除性能.实验和理论证据表明,BiOI光生电子可以通过预成型的电子传递通道直接转移到SrTiO3表面.XRD和XPS结果表明,SrTO3/BiOI复合材料已成功制备.SEM和TEM图像显示了SrTiO3,BiOI和STB样品的形貌.能量色散X射线(EDX)元素图清楚地表明SrTiO3均匀分布在BiOI纳米片表面,证实BiOI与SrTiO3形成了界面.高分辨率XPS表明,电子从BiOI中Bi和I原子转移到STB化合物中SrTO3的Sr和Ti原子.采用DFT进一步确定了BiOI与SrTiO3相互作用的机制.电子局域函数(ELF)表明,STB的接触界面存在共价相互作用.SrTiO3和BiOI之间生成的共价键导致局域化超额电子(e-ex)的积累.在可见光照射下,界面内的电子交换增强,从而提高反应物活化和ROS生成的效率.采用自制的连续流反应体系,研究了在可见光照射下制备的样品对NO去除的光催化性能.与SrTiO3和BiOI相比,STB具有显著增强的可见光光催化活性,去除率为59.0%.UV-vis DRS显示,STB异质结的光吸收扩展到可见光范围.SrTiO3具有可见光活性,这归因于EPR所描述的氧空位的存在.随后计算态密度(DOS),发现氧空位可以形成缺陷能级,降低激发电子所需的光能.利用ESR光谱发现,STB上的ESR信号强度都要强得多,说明STB异质结具有较好的氧化能力,也说明光生载流子可以通过电子传递通道被有效地分离.原位红外光谱表明,在SrTiO3上,NO主要转化为NO2.STB的加速电荷分离和转移特性,促进活性氧的生成,从而进一步有效地将有毒中间体NO2转化为目标产物.设计并制备的SrTiO3/BiOI异质结光催化剂在可见光辐照下净化空气中NO的效率提高,同时抑制了有毒中间体的生成.通过实验和理论相结合的方法揭示了在两种材料的接触界面上建立的电子传递通道.来自BiOI的光生电子可以通过预先形成的电子传递通道直接转移到SrTiO3表面,从而促进了ROS的生成,所以整体的NO纯化效率和对有毒中间体的抑制作用提高.综上,本文提出了一种简单、新颖的促进空气污染物高效安全净化的策略.  相似文献   

19.
《中国化学快报》2021,32(9):2782-2786
To achieve an efficient photocatalytic for clean energy production and environmental remediation, the highly active Fe-doped and terephthalaldehyde-modified carbon nitride (Fe-CN/NTE) isotypic heterojunction photocatalyst is constructed via a simple annealing method for degradation of organic pollutants with simultaneous resource recovery. The Fe-CN/NTE catalyst exhibits a 93% removal rate of p-nitrophenol (4-NP) and a 1.72 mmol/g H2 evolution rate in 2 h simultaneously under visible light irradiation, which are higher than those of pristine CN, Fe-CN, and NTE, respectively. Photoelectrochemical tests show that the excellent photocatalytic performance of Fe-CN/NTE comes from the improved migration, transportation, and separation of photoinduced charge carriers and expanded light-harvesting range. Moreover, hydroxyl radical (OH), electron (e), and hole (h+) are the main active species and the rational mechanism of 4-NP photodegradation was proposed based on scavenger measurements and liquid chromatography-mass spectrometry (LC–MS), respectively. Isotypic heterojunction Fe-CN/NTE photocatalyst possesses excellent stability in the H2 evolution and 4-NP degradation during five-run cycle tests, posing as a promising candidate in practical works for organic pollution and energy challenges.  相似文献   

20.
以硫代乙酰胺为硫源,采用水热阴离子转移法,制备由纳米片组装的花球状Bi2S3/BiOI复合光催化剂。以气相甲醛作为模型污染物,在检测舱中考察了复合催化剂对甲醛的净化作用。结果表明,具有异质结结构的Bi2S3/BiOI复合光催化剂具有较高的光催化活性,能在可见光下净化空气中的甲醛,并且具有良好的循环使用稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号