首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
赵宏康  王清 《计算物理》2005,22(2):149-154
应用非平衡格林函数方法研究通过环形碳纳米管-量子点耦合系统的介观输运.相干隧穿与环形碳纳米管和量子点各自的能级结构有强烈的依赖关系,阿哈郎诺夫-玻姆效应使能级周期性变化,隧穿电流则随磁通量作周期性振荡.环形碳纳米管的具体纳米结构显示出金属-半导体相变特性,这种行为也在输出电流中体现出来.子系统量子能级的匹配与失配关系在介观输运过程中起重要作用.  相似文献   

2.
The energy spectra of low-lying states of an exciton in a single and a vertically coupled quantum dots arestudied under the influence of a perpendicularly applied magnetic field. Calculations are made by using the method ofnumerical diagonalization of the Hamiltonian within the effective-mass approximation. We also calculated the bindingenergy of the ground and the excited states of an exciton in a single quantum dot and that in a vertically coupledquantum dot as a function of the dot radius for different values of the distance and the magnetic field strength.  相似文献   

3.
The energy spectra of low-lying states of an exciton in a single and a vertically coupled quantum dots are studied under the influence of a perpendicularly applied magnetic field. Calculations are made by using the method of numerical diagonalization of the Hamiltonian within the effective-mass approximation. We also calculated the binding energy of the ground and the excited states of an exciton in a single quantum dot and that in a vertically coupled quantum dot as a function of the dot radius for different vaJues of the distance and the magnetic field strength.  相似文献   

4.
We study a two-electron system in a double-layer quantum dot under a magnetic field by means of the exact diagonalization of the Hamiltonian matrix.We find that discontinuous ground-state energy transitions are induced by an external magnetic field in the case of strong coupling.However,in the case of weak coupling,the angular momentum L of the true ground state does not change in accordance with the change of the magnetic field B and remains L=0.  相似文献   

5.
A subminiature mesoscopic cell,consisting of asymmetric double quantum dots capacitively coupled to a nearby mesoscopic circuit,is proposed,which can transform disordered noise energy to ordered electric energy.Two schemes,the noises originating from the nearby mesoscopic circuit and from the electromagnetic wave disturbance in external environment,are investigated.We found that the proposed cell can manifest as a good constant current source and the output current may not reach its largest value even if the circuit is shorted.  相似文献   

6.
In the present paper, by applying the Lang-Firsov canonical transformation and the so-called non-crossing approximation technique, we investigate the joint effects of the electron-phonon interaction and an external alternating gate voltage on the transport of a quantum dot system in the Kondo regime. We find that, while the satellite Kondo resonant peaks appear in both the averaged local density of states and the differential conductance, the main Kondo peak at the Fermi energy is greatly suppressed. These results confirm the previous ones derived by other methods, such as the equation of motion solution. Furthermore, based on the picture of virtual transition between quasi-eigenstates in the system, we also give a slightly different explanation on these phenomena.  相似文献   

7.
Nonequilibrium Green's function is uscd to study spin-polarized electron tunneling through a quantum dot connected to two ferromagnetic electrodes with different orientations via two insulating barriers (FM/I/QD/I/FA.f). Intra-level Coulomb interaction in the dot is considered. General formula of tunneling current which can be used for arbitrary angle between the two electrodes' magnetizations is derived for both the weak and strong intra-dot interactions.We find that the transport current can be divided into two parts: the current with the spin-flip and the current without the spin-flip, which critically depend on the linewidth function near the Fermi level of the ferromagnetic electrodes. If a magnetic field is applied in the quantum dot, different behaviors will be found for weak and strong interactions.  相似文献   

8.
Two interacting electrons in a harmonic oscillator potential under the influence of a perpendicular homo-geneous magnetic field are considered. The energies of two-electron quantum dots with the electron-LO-phonon couplingas a function of magnetic field are calculated. Calculations are made by using the method of few-body physics withinthe effective-mass approximation. Our results show that the electron-LO-phonon coupling effect is very important insemiconductor quantum dots.  相似文献   

9.
The polaron effect in a quantum dot quantum well (QDQW)system is investigated by using the perturbation method. Both the bound electron states outside and inside the shell well are taken into account . Numerical calculation on the CdS/HgS QDQW shows that the phonon correction to the electron ground state energy is quite significant and cannot be neglected.  相似文献   

10.
We investigate the effect of the position of the donor in quantum dots on the energy spectrum in the presence of a perpendicular magnetic field by using the method of few-body physics,As a function of the magnetic field,we find,when D^- centers are placed sufficiently off-center,discontinuous ground-state transitions which are similar to those found in many-electron parabolic quantum dots.Series of magic numbers of angular momentum which minimize the ground-state electron-electron interaction energy have been discovered.The dependence of the binding energy of the gound-state of the D^- center on the dot radius for a few values of the magnetic field strength is obtained and compared with other results.  相似文献   

11.
The research work on the quantum effects in mesoscopic circuits has undergone a rapid development recently, however the whole quantum theory of the mesoscopic circuits should consider the discreteness of the electric charge. In this paper, based on the fundamental fact that the electric charge takes discrete values, the finite-difference Schrodinger equation of the mesoscopic RLC circuit with a source is achieved. With a unitary transformation, the Schrodinger equation becomes the standard Mathieu equation, then the energy spectrum and the wave functions of the system are obtained. Using the WKBJ method, the average of durrents and square of the current are calculated. The results show the existence of the current fluctuation, which causes noise in the circuits. This paper is an application of the whole quantum mesoscopic circuits theory to the fundamental circuits, and the results will shed light on the design of the miniation circuits, especially on the purpose of reducing quantum noise coherent controlling of the mesoscopic quantum states.  相似文献   

12.
The research work on the quantum effects in mesoscopic circuits has undergone a rapid development recently, however the whole quantum theory of the mesoscopic circuits should consider the discreteness of the electric charge. In this paper, based on the fundamental fact that the electric charge takes discrete values, the finite-difference Schrodinger equation of.the mesoscopic RLC circuit with a source is achieved. With a unitary transformation, the Schrodinger equation becomes the standard Mathieu equation, then the energy spectrum and the wave functions of the system are obtained. Using the WKBJ method, the average of currents and square of the current are calculated. The results show the existence of the current fluctuation, which causes noise in the circuits. This paper is an application of the whole quantum mesoscopic circuits theory to the fundamental circuits, and the results will shed light on the design of the miniation circuits, especially on the purpose of reducing quantum noise coherent controlling of the mesoscopic quantum states.  相似文献   

13.
在电子-体纵光学(Longitudinal optical,LO)声子强耦合条件下,采用LLP-Pekar型变分法推导出计及厚度下量子点中极化子的基态和第一激发态能量本征值和本征函数以及平均声子数的电磁场依赖性。在此基础上,以极化子的二能级结构为载体构造了量子点量子比特。数值计算结果表明:量子比特的振荡周期T_0随量子点厚度L的增加而增大,随磁场的回旋频率ωc、电场强度F和电声子耦合强度α的增加而减小。量子比特的概率密度︱Ψ(ρ,z,t)~2︱随电子横向坐标ρ的变化呈现"正态分布"并受到量子盘厚度L和有效半径R_0的强烈影响,随电子纵向坐标z、角坐标φ和时间t作周期性振荡变化。消相干时间τ随磁场的回旋频率ω_c、色散系数η和电子-声子耦合常数α的增加而增大,随电场强度F、量子点厚度L和有效半径R_0的增加而减小。量子点的厚度是量子点量子比特的一个重要参数,理论上可以通过设计不同的量子盘厚度并结合调节外加电磁场的强度,达到调控量子比特振荡周期、消相干时间大小的目的。  相似文献   

14.
The mesoscopic nonlinear inductance-capacitance circuit is a typical anharmonie oscillator, due to diodes included in the circuit. In this paper, using the advanced quantum theory of mesoseopie circuits, which based on the fundamental fact that the electric charge takes discrete value, the diode included mesoscopic circuit is firstly studied. Schrodinger equation of the system is a four-order difference equation in p rep asentation. Using the extended perturbative method, the detail energy spectrum and wave functions axe obtained and verified, as an application of the results, the current quantum fluctuation in the ground state is calculated. Diode is a basis component in a circuit, its quantization would popularize the quantum theory of mesoscopie circuits. The methods to solve the high order difference equation are helpful to the application of mesoscopic quantum theory.  相似文献   

15.
单量子点微腔激光器的研究   总被引:1,自引:0,他引:1  
研究一个三能级量子点耦合到单模光学腔组成的系统,该单量子点激光器的泵浦阈值较小,激光能较快地达到稳定输出,当量子点和腔模耦合强度增强时,其泵浦阈值更小,激光达到稳定输出的速度更快。  相似文献   

16.
We theoretically investigate properties of the ground state of a closed dot-ring system with a magnetic flux in the Kondo regime by means of a tight-banding Anderson Hamiltonian, using the Slave-Boson mean-field approach. The persistent current shows interesting dependences on the parity and on the size of the system. The signature of Kondo resonance at ζk/L = 0.15 is expected to be observed experimentally in the future. With the intensity of the coupling tD changes from weak to strong, the properties of the system changes largely, which are different from the in-line one because of the attached dot.  相似文献   

17.
We theoretically investigate the Kondo effect of a quantum dot embedded in a mesoscopic Aharonov-Bohm (AIR) ring in the presence of the spin flip processes by means of the one-impurity Anderson Hamiltonian. Based on the slave-boson mean-field theory, we find that in this system the persistent current (PC) sensitively depends on the parity and size of the AB ring and can be tuned by the spin-flip scattering (R). In the small AB ring, the PC is suppressed due to the enhancing R weakening the Kondo resonance. On the contrary, in the large AB ring, with R increasing, the peak of PC firstly moves up to max-peak and then down. Especially, the PC phase shift of π appears suddenly with the proper value of R, implying the existence of the anomalous Kondo effect in this system. Thus this system may be a carldidate for quantum switch.  相似文献   

18.
The mesoscopic nonlinearinductance-capacitance circuit is a typical anharmonicoscillator, due to diodes included in the circuit. In this paper, using the advanced quantum theory of mesoscopic circuits, which based on the fundamental fact that the electric charge takes discrete value, the diode included mesoscopic circuit is firstly studied. Schrödinger equation of the system is a four-order difference equation in \hat{p} representation.Using the extended perturbative method, the detail energy spectrumand wave functions are obtained and verified, as an application ofthe results, the current quantum fluctuation in the ground state iscalculated. Diode is a basis component in a circuit, its quantization would popularize the quantum theory of mesoscopic circuits. The methods to solve the high order difference equation are helpful to the application of mesoscopic quantum theory.  相似文献   

19.
We theoretically investigate the Kondo effect of a quantum dot embedded in a mesoscopic Aharonov-Bohm (AB) ring in the presence of the spin flip processes by means of the one-impurity Anderson Hamiltonian. Based on the slave-boson mean-field theory, we find that in this system the persistent current (PC) sensitively depends on the parity and size of the AB ring and can be tuned by the spin-flip scattering (R). In the small AB ring, the PC issuppressed due to the enhancing R weakening the Kondo resonance.On the contrary, in the large AB ring, with R increasing, the peakof PC firstly moves up to max-peak and then down. Especially, the PCphase shift of ø appears suddenly with the proper value of R, implying the existence of the anomalous Kondo effect in this system. Thus this system may be a candidate for quantum switch.  相似文献   

20.
In this paper, a negatively charged exciton trapped by a spherical parabolic quantum dot has been investigated. The energy spectra of low-lying states are calculated by means of matrix diagonalization. The important feature of the low-lying states of the negatively charged excitons in a spherical quantum dot is obtained via an analysis of the energy spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号