首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As an innovative thermal energy technology, the spray-type packed bed has advantages of high efficiency and low cost. A liquid distributor is the key component for the spray-type packed bed for scattering heat-transfer liquid drops evenly. In this study, the distribution performance and pressure drop of the perforated plate distributors of different orifice diameters were studied experimentally. The experimental results indicate that orifice diameter has a greater effect on the distribution performance compared to flow rate. With an increase in flow rate, the flow pattern through the distributor changes from the uncovered drop to the covered drop and then to the jet flow. The covered drop pattern shows the best performance with a good distribution and a small pressure drop simultaneously, which is the design and optimization principle of the distributor for a spray-type packed bed.  相似文献   

2.
Condensation heat transfer of R134a in a vertical plate heat exchanger was investigated experimentally. The local heat transfer coefficients are determined by means of the measured local wall temperatures. A differential energy balance model is developed for data evaluation. It is found that the correlation proposed by Shah using Ψ and Z factors is suitable for condensation in plate heat exchangers and is adopted to fit the measured data.  相似文献   

3.
Dynamic experiments in a nonadiabatic packed bed were carried out to evaluate the response to disturbances in wall temperature and inlet airflow rate and temperature. A two-dimensional, pseudo-homogeneous, axially dispersed plug-flow model was numerically solved and used to interpret the results. The model parameters were fitted in distinct stages: effective radial thermal conductivity (K r) and wall heat transfer coefficient (h w) were estimated from steady-state data and the characteristic packed bed time constant (τ) from transient data. A new correlation for the K r in packed beds of cylindrical particles was proposed. It was experimentally proved that temperature measurements using radially inserted thermocouples and a ring-shaped sensor were not distorted by heat conduction across the thermocouple or by the thermal inertia effect of the temperature sensors.  相似文献   

4.
5.
The two-phase flow in the corrugated gap created by two adjacent plates of a plate heat exchanger was investigated experimentally. One setup consisting of a transparent corrugated gap was used to visualize the two-phase flow pattern and study the local phenomena of phase distribution, pressure drop and void fraction. Saturated two-phase R365mfc and an air-water mixture were used as working fluids.In a second experimental setup, the heat transfer coefficients and the pressure drop inside an industrial plate heat exchanger during the condensation process of R134a are determined. Both experimental setups use the same type of plates, so the experimental results can be connected and a flow pattern model for the condensation in plate heat exchangers can be derived. In this work the results of the flow pattern visualization, the two-phase pressure drop in the corrugated gap and the void fraction analysis by measurement of the electrical capacity are presented. A new pressure drop correlation is derived, which takes into account different flow patterns, that appear during condensation. The mean deviation of the presented pressure drop model compared to the experimental data and data from other experimental works is 18.9%. 81.7% of the calculated pressure drop lies within ±30% compared to the experimental data.  相似文献   

6.
The effects of internals and gas distributors on the local dynamics of the bubbles in the conventional gas-solid fluidized bed were studied.Mesh-type internals with different opening areas(50%,70%and 90%)and different arrangements(two-layer and four-layer);and a sintered plate with a smaller pore size(1μm)and a perforated plate with a larger pore size as distributors were investigated.Differential pressure drops and local solids holdups were measured under various superficial gas velocities to compare the performances of the different types of internals and distributors.The instantaneous solids holdup signals from the optical fibre probe were used to further examine the local bubble dynamics in detail.Smaller bubbles were found,with the installation of internals or using the sintered plate,resulting in lower pressure drops and a higher bed expansion.Internals with reduced opening area or distributor with smaller pore size further leads to a higher changeover rate between the bubbles and dense phase,both axially and radially,and hence a better gas-solid contacting and an earlier transition to the turbulent flow regime of the bed.  相似文献   

7.
8.
Spirally fluted tubes are used extensively in the design of tubular heat exchangers. In previous investigations, results for tubes with flute depths e/Dvi < 0.2 were reported, with most correlations applicable for Re ≥ 5000. This paper presents the results of an experimental investigation of the heat transfer and pressure drop characteristics of spirally fluted tubes with the following tube and flow parameter ranges: flute depth e/Dvi = 0.1−0.4, flute pitch p/Dvi = 0.4−7.3, helix angle θ/90° = 0.3−0.65, Re = 500−80,000, and Pr = 2−7. The heat transfer coefficients inside the fluted tube were obtained from measured values of the overall heat transfer coefficient using a nonlinear regression scheme. The friction factor data obtained consisted of 507 data points. The proposed correlation for the friction factor predicts 96% of the database within ±20%. The heat transfer correlation for the range 500 ≤ Re ≤ 5000 predicts 76% of the database (178 data points) within ±20%, and the correlation for the higher Re range predicts 97% of the 342 data points within ±20%. Comparison of heat transfer and friction data show that these tubes are most effective in the laminar and transition flow regimes. The present results show that the increase of flute depth in the range considered does not improve heat transfer.  相似文献   

9.
10.
In this article, a standard 2D Two-Fluid Model (TFM) closed by the kinetic theory of granular flow (KTGF) has been applied to simulate the behavior of tapered-in and tapered-out fluidized bed reactors. In this regard, two types of chemical reactions with gas volume reduction and increase were considered to investigate the effects of initial static bed height on the fractional conversion and bed pressure drop. To validate the CFD model predictions, the results of hydrodynamic simulations concerning bed pressure drop and bed expansion ratio were compared against experimental data reported in the literature and excellent agreement was observed. The obtained simulation results clearly indicate that there is an appropriate static bed height in a tapered-in reactor in which the fractional conversion becomes maximum at this height; whereas variations of static bed height in a tapered-out reactor have insignificant influences on the fractional conversion. Moreover, it was found that the residence time, temperature, and intensity of turbulence of the gas phase are three important factors affecting the fractional conversion in tapered fluidized bed reactors. In addition, it was observed that increasing the static bed height increases the bed pressure drop for both the tapered-in and tapered-out fluidized bed reactors.  相似文献   

11.
Experimental measurements of the forced convection gas-particle heat transfer coefficient in a packed bed, high-temperature, thermal energy storage system were performed using a custom-made experimental facility. Special attention was paid to the application of uncertainty analysis (a very important concept in experimentation). General and detailed uncertainty analyses were carried out, which identified the choices that were made in the experimental planning and procedure to ensure reliable final results. The experimental data reduction program used the governing equations and the results of the uncertainty analysis while making allowance for media property variations with temperature. Results were correlated in terms of Nusselt number, Prandtl number and Reynolds number and comparisons were made with existing correlations developed with similar storage media. The maximum temperature for the bed was about 1000°C (1830°F) with flue gas as the operating fluid in the storage mode and atmospheric air in the recovery mode. Because most related previous studies were not necessarily focused on high-temperature applications, the published gas-particle heat transfer correlations were obtained at relatively low temperature ranges, generally at room temperature or at temperatures slightly above room temperature. Moreover, only a few of the previously reported correlations associated the results with the corresponding uncertainty margins. The results from this study give a convective gas-particle heat transfer correlation for high-temperature thermal energy storage applications. Also, due to substantial uncertainties normally associated with the measurements of this heat transfer coefficient, it is significant to note that no firm conclusions can be reached on the validity or non-validity of previously reported related correlations for which the uncertainty margins were not reported.  相似文献   

12.
According to the special airframe construction of the prototype and the particular environment of the near space, the thermodynamics modeling simulation is designed to instruct the temperature-rise tests on the ground and guarantee the steady operation of the optics, electronics and mechanical structure system in optical transmitter and receiver, which demonstrated the goodness of fit for theoretical and experimental analysis. In the meantime, the temperature-rise tests for the critical components and physical model are controlled by BP algorithm which saved experimental periods and improved the conventional efficient. In the end, the internal temperature field distribution in the optical transmitter and receiver is analyzed in this paper, and how to keep the uniformity of the thermal field in a short time is studied as well. And the analytic results show that the experiments satisfy the required indices, what’s more, the analytic process may supervise the analytical calculation of the same type optical transmitter and receiver, which is worth using in engineering.  相似文献   

13.
In the maritime environment slamming is a phenomenon known as short duration impact of water on a floating or sailing structure. Slamming loads are local and could induce very high local stresses. This paper reports a series of impact test results and investigate the slamming loads and pressures acting on a square based pyramid. In this study the slamming tests have been conducted at constant velocity impact with a hydraulic high speed shock machine. This specific experimental equipment avoids the deceleration of the structure observed usually during water entry with drop tests. Three velocities of the rigid pyramid have been used (10, 13 and 15 m s−1). Time-histories of local pressures, accelerations and slamming loads were successfully measured. The relationship between the pressure magnitude and the impact velocity is obtained and the spatial distribution of pressures on pyramid sides is characterized. The impact velocity was found to have a negligible influence in predicting the maximum pressure coefficient.  相似文献   

14.
Uniform distribution of fluids is crucial to obtain high performance in compact heat exchangers. Maldistribution has been studied by many authors, especially for parallel channels heat exchangers. But theoretical models and experimental studies for predicting flow maldistribution in offset strip fins exchangers are scarce. Offset strip fins, besides their higher thermal hydraulic performances, favour lateral distribution due to their geometry. In this work, an experimental investigation has been carried out for this type of heat exchanger. The experimental set-up consists in a flat vertical compact heat exchanger (1 m × 1 m area and 7.13 mm thickness) equipped with offset strip fins with a hydraulic diameter of 1.397 mm. Air and water are the working fluids. The flow rates of each phase in seven zones regularly distributed at the outlet have been measured as well as the pressures at the inlet, the outlet and two intermediate positions. These measurements were completed with visualisations using a high-speed camera.  相似文献   

15.
A new type of tube is introduced that has a three-dimensional internally extended surface used to enhance convective heat transfer inside the tube. Results are presented from experimental investigations into heat transfer performance in seven copper tubes of about 13.5 mm I.D. with three-dimensional internally extended surfaces (3-DIESTs) varying in axial pitch, circumferential pitch, height, width, and fin arrangement. The heat transfer and pressure drop characteristics of ethylene glycol flowing in the 3-DIESTs were tested in the Re range 250–7000 and Pr range 60–90. The average Stanton number in the most superior 3-DIEST can be increased by about 2.8-fold in laminar flow and 4.5-fold in transitional and turbulent flow compared with that in the smooth tube. The corresponding friction factor is 1.7-fold as high in laminar flow and fourfold in transitional and turbulent flow inside the 3-DIEST compared to that inside a smooth tube. The correlations of heat transfer and friction factor are obtained separately in the different flow regions that can be used in practical design.  相似文献   

16.
The gas-solid flow pattern in a rectangular cross-flow moving bed is simulated by the multiphase particle-in-cell(MP-PIC)model with the Barracuda software.The computed results are verified by the experimental data.In the bed,the actual solid flux generally equals the solid flow rates in the solid feed and discharge tubes.However,these two flow rates are greatly influenced by the air lock and the pressure drop in the solid feed and discharge tubes,namely,the negative and positive pressure gradients,respectively,rather than the traditional opinion that they are merely controlled by the valve openings.The pressure drops in these tubes are calculated by the proposed“common pressure pool with multiple outlets”(CPPMO)and the“common pressure pool”(CPP)methods.It is found that the local gas resistance dominates the pressure drop in the solid discharge tubes,while the gas frictional resistance determines the pressure drop in the solid feed tube.In addition,when the solid flow rate nearly tends to zero in the solid feed tube,the air lock forms.A solid flux equation is then given by considering both the air lock and the pressure drop factors in the cross-flow moving bed.  相似文献   

17.
An experimental study on unsteady two phase flow is conducted in a vertical shock tube. Shock Mach numbers range from 1.3 to 1.5 in 1 bar. The particles are initially positioned in horizontal beds of various thicknesses. Our research covers a large domain of void fraction from 1 (single particles) to 0.35 (compact beds). The experiments provide shadowgraph images for the recording of particle trajectories (effect of the gas on the particles) and side-wall pressures (action of the particles on the gas). A dense two phase flow model has been elaborated and numerically solved using a finite difference scheme with pseudoviscosity. The simulated shock-induced fluidization of a 2 cm thick bed of 1.5 mm diameter glass particles is compared to the experiment. Received 10 September 1996 / Accepted 4 January 1997  相似文献   

18.
Experimental results concerning crown formation during liquid drop impact on wetted surfaces are reported. Different liquids and numerous impact conditions are investigated. In particular, crown-splash (C-S) and deposition-crown (D-C) limits are determined on the basis of the experimental observations. These limits converge for dimensionless film thickness thinner than 0.03, leaving the outcome of crown formation unobserved. The sole Weber number and dimensionless film thickness cannot explain the phenomenon. It appears that all these data can be described using a combination of Weber and Ohnesorge numbers versus dimensionless film thickness.  相似文献   

19.
The article gives the results of an experimental investigation of the pressure on a triangular airfoil with blunt edges with a half aperture angle =45° under angles of attack =0,5,10°, with M=11.6 and Re1.5×106. It has been observed that in a region adjacent to the axis of symmetry, at a certain distance from the apex, there is observed a considerable lowering of the pressure.Moscow. Translated from Izvestiya Akademii Nauk SSSR. Mekhanika Zhidkosti i Gaza, No. 2, pp. 166–169, March–April, 1972.  相似文献   

20.
New experimental data regarding the motion of a drop along the axis of a vertical tube, filled with another highly viscous liquid, are obtained. The experiments are realised with sufficiently large drops for an internal circulation to develop and also for different pairs of fluids; the preponderant role of the gravity on the drop shape and consequently on its terminal velocity is pointed out. Moreover, by means of a visualization technique, details on the flow both inside and outside the drop are given.List of symbols g gravity acceleration - r distance from the drop center - R equivalent radius of the drop, i.e. the radius of the sphere having the same volume as the drop - R EQ radius of the equatorial section of the drop - R T tube radius - L AX half length of the drop - U 0 terminal velocity of the drop - P s Poiseuille number= U 0 e /4 g R 2 - Fr Fronde number = U 0 2 e /2 g R - Re Reynolds number = 2 U 0 R e / e - E o Eötvös number = 4g R 2/ - deformation parameter = e U 0/ - apparent density of the suspended liquid= | i e | - i viscosity of the suspended liquid - e viscosity of the suspending liquid - drop-to-tube radius ratio = R/R T - EQ equatorial drop-to-tube radius ratio = R EQ/R T - interfacial tension  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号