首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quantum information theorists have created axiomatic reconstructions of quantum mechanics (QM) that are very successful at identifying precisely what distinguishes quantum probability theory from classical and more general probability theories in terms of information-theoretic principles. Herein, we show how one such principle, Information Invariance and Continuity, at the foundation of those axiomatic reconstructions, maps to “no preferred reference frame” (NPRF, aka “the relativity principle”) as it pertains to the invariant measurement of Planck’s constant h for Stern-Gerlach (SG) spin measurements. This is in exact analogy to the relativity principle as it pertains to the invariant measurement of the speed of light c at the foundation of special relativity (SR). Essentially, quantum information theorists have extended Einstein’s use of NPRF from the boost invariance of measurements of c to include the SO(3) invariance of measurements of h between different reference frames of mutually complementary spin measurements via the principle of Information Invariance and Continuity. Consequently, the “mystery” of the Bell states is understood to result from conservation per Information Invariance and Continuity between different reference frames of mutually complementary qubit measurements, and this maps to conservation per NPRF in spacetime. If one falsely conflates the relativity principle with the classical theory of SR, then it may seem impossible that the relativity principle resides at the foundation of non-relativisitic QM. In fact, there is nothing inherently classical or quantum about NPRF. Thus, the axiomatic reconstructions of QM have succeeded in producing a principle account of QM that reveals as much about Nature as the postulates of SR.  相似文献   

2.
The task of reconstructing the system’s state from the measurements results, known as the Pauli problem, usually requires repetition of two successive steps. Preparation in an initial state to be determined is followed by an accurate measurement of one of the several chosen operators in order to provide the necessary “Pauli data”. We consider a similar yet more general problem of recovering Feynman’s transition (path) amplitudes from the results of at least three consecutive measurements. The three-step histories of a pre- and post-selected quantum system are subjected to a type of interference not available to their two-step counterparts. We show that this interference can be exploited, and if the intermediate measurement is “fuzzy”, the path amplitudes can be successfully recovered. The simplest case of a two-level system is analysed in detail. The “weak measurement” limit and the usefulness of the path amplitudes are also discussed.  相似文献   

3.
4.
We propose the first correct special-purpose quantum circuits for preparation of Bell diagonal states (BDS), and implement them on the IBM Quantum computer, characterizing and testing complex aspects of their quantum correlations in the full parameter space. Among the circuits proposed, one involves only two quantum bits but requires adapted quantum tomography routines handling classical bits in parallel. The entire class of Bell diagonal states is generated, and several characteristic indicators, namely entanglement of formation and concurrence, CHSH non-locality, steering and discord, are experimentally evaluated over the full parameter space and compared with theory. As a by-product of this work, we also find a remarkable general inequality between “quantum discord” and “asymmetric relative entropy of discord”: the former never exceeds the latter. We also prove that for all BDS the two coincide.  相似文献   

5.
If quantum mechanics is taken for granted, the randomness derived from it may be vacuous or even delusional, yet sufficient for many practical purposes. “Random” quantum events are intimately related to the emergence of both space-time as well as the identification of physical properties through which so-called objects are aggregated. We also present a brief review of the metaphysics of indeterminism.  相似文献   

6.
We consider a semantics based on the peculiar holistic features of the quantum formalism. Any formula of the language gives rise to a quantum circuit that transforms the density operator associated to the formula into the density operator associated to the atomic subformulas in a reversible way. The procedure goes from the whole to the parts against the compositionality-principle and gives rise to a semantic characterization for a new form of quantum logic that has been called “Łukasiewicz quantum computational logic”. It is interesting to compare the logic based on qubit-semantics with that on qudit-semantics. Having in mind the relationships between classical logic and Łukasiewicz-many valued logics, one could expect that the former is stronger than the fragment of the latter. However, this is not the case. From an intuitive point of view, this can be explained by recalling that the former is a very weak form of logic. Many important logical arguments, which are valid either in Birkhoff and von Neumann’s quantum logic or in classical logic, are generally violated.  相似文献   

7.
Quantum candies (qandies) represent a type of pedagogical simple model that describes many concepts from quantum information processing (QIP) intuitively without the need to understand or make use of superpositions and without the need of using complex algebra. One of the topics in quantum cryptography that has gained research attention in recent years is quantum digital signatures (QDS), which involve protocols to securely sign classical bits using quantum methods. In this paper, we show how the “qandy model” can be used to describe three QDS protocols in order to provide an important and potentially practical example of the power of “superpositionless” quantum information processing for individuals without background knowledge in the field.  相似文献   

8.
Symmetries and dynamics of wave nodes in space and time expose principles of quantum theory and its relativistic underpinning. Among these are key principles behind recently discovered dephasing and rephasing phenomena known as revivals. A reexamination of basic Eberly revivals, Berry “quantum fractal” landscapes, and the “quantum carpets” of Schleich and co-workers reveals a simple Farey arithmetic and Cn-group revival structure in one of the earliest quantum wave models, the Bohr rotor. These principles may be useful for interpreting modern time-dependent rovibrational spectra. The nodal dynamics of the Bohr rotor is seen to have a quasi-fractal structure similar to that of earlier systems involving chaotic circle maps. The fractal structure is an overlay of discrete versions of Bohr's rotor model. Each N-point Bohr rotor acts like a base-N quantum “odometer” which performs rational fraction arithmetic. Such systems may have applications for optical information technology and quantum computing.  相似文献   

9.
It is known that “quantum non locality”, leading to the violation of Bell’s inequality and more generally of classical local realism, can be attributed to the conjunction of two properties, which we call here elementary locality and predictive completeness. Taking this point of view, we show again that quantum mechanics violates predictive completeness, allowing the making of contextual inferences, which can, in turn, explain why quantum non locality does not contradict relativistic causality. An important question remains: if the usual quantum state ψ is predictively incomplete, how do we complete it? We give here a set of new arguments to show that ψ should be completed indeed, not by looking for any “hidden variables”, but rather by specifying the measurement context, which is required to define actual probabilities over a set of mutually exclusive physical events.  相似文献   

10.
Wigner’s friend scenarios involve an Observer, or Observers, measuring a Friend, or Friends, who themselves make quantum measurements. In recent discussions, it has been suggested that quantum mechanics may not always be able to provide a consistent account of a situation involving two Observers and two Friends. We investigate this problem by invoking the basic rules of quantum mechanics as outlined by Feynman in the well-known “Feynman Lectures on Physics”. We show here that these “Feynman rules” constrain the a priori assumptions which can be made in generalised Wigner’s friend scenarios, because the existence of the probabilities of interest ultimately depends on the availability of physical evidence (material records) of the system’s past. With these constraints obeyed, a non-ambiguous and consistent account of all measurement outcomes is obtained for all agents, taking part in various Wigner’s Friend scenarios.  相似文献   

11.
Evidence is recalled of the strong opposition of Niels Bohr, at the time of the Old Quantum Theory 1913–1925, to the Lichtquanten hypothesis of Einstein. Some episodes with H. A. Kramers, J. C. Slater, and W. Heisenberg are recollected; Bohr's changing point of view is traced back to some philosophical antecedents and to his endeavor to deduce quantum results from the Correspondence Principle. Some consequences for the future interpretation of Quantum Mechanics, specially to the Complementarity Principle, are considered.  相似文献   

12.
The consensus regarding quantum measurements rests on two statements: (i) von Neumann’s standard quantum measurement theory leaves undetermined the basis in which observables are measured, and (ii) the environmental decoherence of the measuring device (the “meter”) unambiguously determines the measuring (“pointer”) basis. The latter statement means that the environment monitors (measures) selected observables of the meter and (indirectly) of the system. Equivalently, a measured quantum state must end up in one of the “pointer states” that persist in the presence of the environment. We find that, unless we restrict ourselves to projective measurements, decoherence does not necessarily determine the pointer basis of the meter. Namely, generalized measurements commonly allow the observer to choose from a multitude of alternative pointer bases that provide the same information on the observables, regardless of decoherence. By contrast, the measured observable does not depend on the pointer basis, whether in the presence or in the absence of decoherence. These results grant further support to our notion of Quantum Lamarckism, whereby the observer’s choices play an indispensable role in quantum mechanics.  相似文献   

13.
14.
Time is one of the undisputed foundations of our life in the real world. Here it is argued that inside small isolated quantum systems, time does not pass as we are used to, and it is primarily in this sense that quantum objects enjoy only limited reality. Quantum systems, which we know, are embedded in the everyday classical world. Their preparation as well as their measurement-phases leave durable records and traces in the entropy of the environment. The Landauer Principle then gives a quantitative threshold for irreversibility. With double slit experiments and tunneling as paradigmatic examples, it is proposed that a label of timelessness offers clues for rendering a Copenhagen-type interpretation of quantum physics more “realistic” and acceptable by providing a coarse but viable link from the fundamental quantum realm to the classical world which humans directly experience.  相似文献   

15.
I numerically simulate and compare the entanglement of two quanta using the conventional formulation of quantum mechanics and a time-symmetric formulation that has no collapse postulate. The experimental predictions of the two formulations are identical, but the entanglement predictions are significantly different. The time-symmetric formulation reveals an experimentally testable discrepancy in the original quantum analysis of the Hanbury Brown–Twiss experiment, suggests solutions to some parts of the nonlocality and measurement problems, fixes known time asymmetries in the conventional formulation, and answers Bell’s question “How do you convert an ’and’ into an ’or’?”  相似文献   

16.
This article considers a partly philosophical question: What are the ontological and epistemological reasons for using quantum-like models or theories (models and theories based on the mathematical formalism of quantum theory) vs. classical-like ones (based on the mathematics of classical physics), in considering human thinking and decision making? This question is only partly philosophical because it also concerns the scientific understanding of the phenomena considered by the theories that use mathematical models of either type, just as in physics itself, where this question also arises as a physical question. This is because this question is in effect: What are the physical reasons for using, even if not requiring, these types of theories in considering quantum phenomena, which these theories predict fully in accord with the experiment? This is clearly also a physical, rather than only philosophical, question and so is, accordingly, the question of whether one needs classical-like or quantum-like theories or both (just as in physics we use both classical and quantum theories) in considering human thinking in psychology and related fields, such as decision science. It comes as no surprise that many of these reasons are parallel to those that are responsible for the use of QM and QFT in the case of quantum phenomena. Still, the corresponding situations should be understood and justified in terms of the phenomena considered, phenomena defined by human thinking, because there are important differences between these phenomena and quantum phenomena, which this article aims to address. In order to do so, this article will first consider quantum phenomena and quantum theory, before turning to human thinking and decision making, in addressing which it will also discuss two recent quantum-like approaches to human thinking, that by M. G. D’Ariano and F. Faggin and that by A. Khrennikov. Both approaches are ontological in the sense of offering representations, different in character in each approach, of human thinking by the formalism of quantum theory. Whether such a representation, as opposed to only predicting the outcomes of relevant experiments, is possible either in quantum theory or in quantum-like theories of human thinking is one of the questions addressed in this article. The philosophical position adopted in it is that it may not be possible to make this assumption, which, however, is not the same as saying that it is impossible. I designate this view as the reality-without-realism, RWR, view and in considering strictly mental processes as the ideality-without-idealism, IWI, view, in the second case in part following, but also moving beyond, I. Kant’s philosophy.  相似文献   

17.
A case for the project of excising of confusion and obfuscation in the contemporary quantum theory initiated and promoted by David Deutsch has been made. It has been argued that at least some theoretical entities which are conventionally labelled as “interpretations” of quantum mechanics are in fact full-blooded physical theories in their own right, and as such are falsifiable, at least in principle. The most pertinent case is the one of the so-called “Many-Worlds Interpretation” (MWI) of Everett and others. This set of idea differs from other “interpretations” since it does not accept reality of the collapse of Schrödinger’s wavefunction. A survey of several important proposals for discrimination between quantum theories with and without wavefunction collapse appearing from time to time in the literature has been made, and the possibilities discussed in the framework of a wider taxonomy.  相似文献   

18.
19.
This paper is our attempt, on the basis of physical theory, to bring more clarification on the question “What is life?” formulated in the well-known book of Schrödinger in 1944. According to Schrödinger, the main distinguishing feature of a biosystem’s functioning is the ability to preserve its order structure or, in mathematical terms, to prevent increasing of entropy. However, Schrödinger’s analysis shows that the classical theory is not able to adequately describe the order-stability in a biosystem. Schrödinger also appealed to the ambiguous notion of negative entropy. We apply quantum theory. As is well-known, behaviour of the quantum von Neumann entropy crucially differs from behaviour of classical entropy. We consider a complex biosystem S composed of many subsystems, say proteins, cells, or neural networks in the brain, that is, S=(Si). We study the following problem: whether the compound system S can maintain “global order” in the situation of an increase of local disorder and if S can preserve the low entropy while other Si increase their entropies (may be essentially). We show that the entropy of a system as a whole can be constant, while the entropies of its parts rising. For classical systems, this is impossible, because the entropy of S cannot be less than the entropy of its subsystem Si. And if a subsystems’s entropy increases, then a system’s entropy should also increase, by at least the same amount. However, within the quantum information theory, the answer is positive. The significant role is played by the entanglement of a subsystems’ states. In the absence of entanglement, the increasing of local disorder implies an increasing disorder in the compound system S (as in the classical regime). In this note, we proceed within a quantum-like approach to mathematical modeling of information processing by biosystems—respecting the quantum laws need not be based on genuine quantum physical processes in biosystems. Recently, such modeling found numerous applications in molecular biology, genetics, evolution theory, cognition, psychology and decision making. The quantum-like model of order stability can be applied not only in biology, but also in social science and artificial intelligence.  相似文献   

20.
Entropy is a concept that emerged in the 19th century. It used to be associated with heat harnessed by a thermal machine to perform work during the Industrial Revolution. However, there was an unprecedented scientific revolution in the 20th century due to one of its most essential innovations, i.e., the information theory, which also encompasses the concept of entropy. Therefore, the following question is naturally raised: “what is the difference, if any, between concepts of entropy in each field of knowledge?” There are misconceptions, as there have been multiple attempts to conciliate the entropy of thermodynamics with that of information theory. Entropy is most commonly defined as “disorder”, although it is not a good analogy since “order” is a subjective human concept, and “disorder” cannot always be obtained from entropy. Therefore, this paper presents a historical background on the evolution of the term “entropy”, and provides mathematical evidence and logical arguments regarding its interconnection in various scientific areas, with the objective of providing a theoretical review and reference material for a broad audience.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号