首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
合成与表征了两类14种烷基钴Schiff碱配合物RCo(chel)L(R=CH3,C2H5,n-C3H7,n-C4H9,i-C4H9;chel=salen,SB;L=Py,γ-pic,PPh3),其中RCo(SB)L是一类新的辅酶B12模型化合物,五配位的C2H5Co(SB)也是首次报道。研究了在固态和溶液中配合物的性质,并讨论了影响配合物中Co─C键稳定性的因素。  相似文献   

2.
尽管目前人们对富勒烯[C60]的过渡金属有机物研究较多[1],但通过氮卡宾方式连接的C60二茂铁衍生物尚未见报道。鉴于对C60反应的浓厚兴趣及二茂铁的广泛应用价值[2]我们 利用C60的缺电子性[3]将其与二茂铁甲基氮卡宾进行[1+2]环加成反应,分离并表征了一种具有齿轮式结构的新奇C60二茂铁衍生物(CpFeC5H4CH2N)5C60(l)。  相似文献   

3.
用Hagihara脱氢卤代法合成了三种新的9,9-二(十六烷基)芴基二聚炔铂(d8)、金和汞(d10)化合物反式- [Pt(Ph)(PEt3)2C≡CRC≡CPt(Ph)(PEt3)2, [(PPh3)AuC≡CRC≡CAu(PPh3)]和[MeHgC≡CRC≡CHgMe] [R=9,9-二(十六烷基)芴基]. 用1H NMR, 13C NMR, 31P NMR, FT-IR, FAB-MS, UV-Vis, 荧光和磷光光谱对其进行了表征. 结果表明, 体系中的铂、金和汞产生的重原子效应可以有效地促进单线激发态S1与三线激发态T1的系间跃迁, 使标题化合物产生有机三线态发光.  相似文献   

4.
我们在此报道了一种未曾发现的有趣现象:尽管[Au23(SC6H11)16]、Au24(SC2H4Ph)20 (Ph:苯环)、Au36(TBBT)28 (TBBTH:对叔丁基苯硫酚)、Au38(SC2H4Ph)24、混合Aux(SC2H4Ph)y团簇及3 nm的金纳米粒子有不同的组成、结构、尺寸和保护性硫醇配体,但它们在三苯基膦(PPh3)作用下,均能统一地经由亚稳的[Au11(PPh3)8Cl2]2+最终转化为稳定的双二十面体[Au25(PPh3)10(SR)5Cl2]2+ (SR:硫醇配体)。换句话说,三苯基膦是这些硫醇保护的纳米粒子的统一转化器。然而,聚乙烯吡咯烷酮(PVP)/柠檬酸盐(Citrate)保护的金纳米粒子和[Ag25(SPhMe2)18] (Me:甲基)在同样的条件下,却不能转化为[Au25(PPh3)10(SR)5Cl2]2+或[Ag25(PPh3)10(SR)5Cl2]2+,暗示了硫醇保护的金纳米粒子具有与三苯基膦反应的独特性能。另外,我们考察了配体对双二十面体[Au25(PPh3)10(SR)5Cl2]2+团簇荧光性能的影响。  相似文献   

5.
田雁  董睿  聂鹏  许波 《有机化学》2024,(1):173-179
钌-锗化合物(PPh3)(X)RuGeCl2Ar Trip (X=H,1;Cl,2;Ar Trip=C6H3-2-(η6-Trip)-6-Trip,Trip=2,4,6-iPr3-C6H3)与有机试剂如格氏试剂、LiHBEt3以及萘钠反应实现了锗和钌原子上的取代基团的调控.化合物1与格氏试剂EtMgBr在不同的温度下反应,分别生成(PPh3)HRu Ge Br2ArTrip (3)和(PPh3)HRuGeEt2ArTrip (4).化合物1和LiHBEt3反应也生成化合物4,在该反应中LiHBEt3作为乙基转移试剂而不是氢化试剂.此外,化合物1与HBF4反应生成离子型化合物[(PPh3)H  相似文献   

6.
室温下, [Cp2Ti(C≡CPh)2], [Cp2Zr(C≡CPh)2]和[(C5H4SiMe3)2Zr(C≡CPh)2]分别与二茂钒作用, 合成了[Cp2V(μ-η2∶η4-PhC4Ph)MCp2′] (1, M=Ti, Cp′=C5H5; 2, M=Zr, Cp′=C5H5; 3, M=Zr, Cp′=C5H4SiMe3). 用元素分析、质谱、核磁共振谱、磁矩、红外和拉曼光谱对配合物进行了表征. 3个配合物具有相似的磁化率, 配合物3的晶体结构分析表明PhC4Ph通过内部2个碳原子键合到Cp2V上, 内部2个碳原子和外部2个碳原子均与Cp2′Zr键合, 丁二烯骨架内部的2个碳原子都具有四配位的平面结构.  相似文献   

7.
郝海燕  刘振  祖莉莉 《物理化学学报》2015,31(11):2029-2035
有机硫化物是大气主要污染物之一,其在大气中的光解产物还将造成二次污染,除了存在于有机硫化物中, S―S键还存在于胱氨酸等蛋白质中, S―S键的形成和断裂决定该类蛋白质的活性.本工作中,我们研究了用实验室常见的Nd:YAG激光器的四倍频266 nm激光光解C2H5SSC2H5过程,通过激光诱导荧光(LIF)光谱方法检测乙硫自由基C2H5S等光解产物.实验表明266 nm激光主要光解C2H5SSC2H5的S―S键产生C2H5S自由基.本文应用密度泛函理论的Becke3-Lee-Yang-Parr泛函(B3LYP方法)得到C2H5SSC2H5的S―S键、C―S键和C―C键的解离势能曲线,可知在266 nm光解条件下, C2H5SSC2H5在基态能够发生S―S键、C―S键解离, C―C键不发生解离.本文采用全活化空间自洽场(CASSCF)方法优化得到态和态的C2H5S自由基结构及其跃迁的绝热激发能,以辅助解析实验检测的C2H5S自由基的LIF光谱.实验结合理论计算最终得出,本实验266 nm光解条件下, C2H5SSC2H5主要发生S―S键解离,不排除少量分子发生C―S键解离的可能性.  相似文献   

8.
朱任宏  方聖鼎 《化学学报》1965,31(3):222-228
从云南省昭通县产的雪上一枝蒿中共分得生物碱五种,其中三种为已知物,即烏头碱、次岛头碱和一枝蒿乙素,另二种为新生物碱,暂名为一枝蒿戊素和己素。一枝蒿戊素的分子式为C24H39O6N,其示性式为C19H22(OH)3(OCH3)3-(N·C2H5);一枝蒿己素的分子式为C24H39O7N,其示性式为C19H21(OH)4(OCH3)3(N·C2H5);另从云南省东川县出产的雪上一枝蒿中,尚分得一新生物碱,暂称为一枝蒿庚素,分子式为C21H31O3N,其示性式为C19H24(:O)(OH)2(N·C2H5)。  相似文献   

9.
四甲基双硅桥联环戊二烯基钠与无水三氯化稀土在THF溶剂中反应合成了标题配合物Me4Si2(C5H4)2LnCl[Ln:3Nd,4Sm,5Gd,6Y]和配合物Me4Si2(C5H4):Ln(C5H5)(THF)n[Ln:1La,n=1;2Pr,n=0].通过元素分析、1HNMR、13CNMR和MS确证了配合物的结构,在THF溶液中重结晶获得配合物4的单晶,x射线衍射证明晶体结构为二聚体,4为单斜晶系,空间群为P21/c,晶体学数据a=1.2982(3)nm,b=1.2269(3)nm,c=1.3681(2)nm,β=96.79(2)°,V=2.162(1)nm3,Z=2,Dx=1.53g/cm3,偏差因子R=0.068.  相似文献   

10.
硅桥连双(三甲硅基环戊二烯基)双锂盐与TiCl4·2THF反应,生成相应的钛化合物[E(C5H3SiMe3)2]TiCl2[E=Me2SiSiMe2(3),Me2SiOSiMe2(5)],同时还分离到了脱一个三甲硅基的产物[E(C5H4)(C5H3SiMe3)]TiCl2[E=Me2SiSiMe2(4),Me2SiOSiMe2(6)].其中四甲基二硅氧桥连配体更容易发生这种脱硅基反应.通过元素分析、MS和1HNMR谱表征了化合物3-6的分子结构.  相似文献   

11.
四甲基二硅氧桥连不对称环戊二烯基及茚基配体C5H5Me2SiOSiMe2Cp′H相继与丁基锂及MCl4·2THF作用,生成四甲基二硅氧桥连不对称茂金属化合物(Me2SiOSiMe2)(C5H4)(Cp′)MCl2[Cp′=C5H3But,M=Ti(1),Zr(2);Cp′=C9H6,M=Ti(3),Zr(4)].通过元素分析、MS和1H NMR谱表征了化合物的分子结构,并通过X射线衍射分析测定了化合物1的晶体结构.研究了在MAO(甲基铝氧烷)的助催化下,化合物1~4对乙烯聚合的催化性能.  相似文献   

12.
炼厂干气中回收乙烯是扩宽C2H4来源的有效途径,但C2H4和C2H6物理性质和分子尺寸非常接近,分离困难.金属有机骨架材料(MOFs)近年来在低碳烃分离领域展现出广阔的前景.本工作采用氨吸附改性调节UTSA-280的结构,通过一维直孔道大小的调节实现C2H4/C2H6的高效分离.改性后的UTSA-280具有独特的超微孔结构能提升C2H4的吸附,而完全不吸附稍大的C2H6,实现理想的C2H4/C2H6吸附选择性(>1000).结果表明,改性后的UTSA-280的C2H4吸附量可提高至2.83 mmol/g,与未改性的材料相比增加29%,并且能阻挡C2H6的吸附,最终达到>1200的C2H4/C2H6选择性.蒙特卡罗分子模拟(GCMC)计算C2H4/C2H6混合气体(1:1)的吸附得出,改性后UTSA-280孔内的C2H4吸附相比于C2H6具有更多的吸附分布.通过C2H4/C2H6混合气体穿透实验测试,改性后的UTSA-280材料能展现出48 min以上的分离时间,相比于未改性的材料,分离性能提升近1倍.  相似文献   

13.
本文报道Co-Ru簇的合成与表征的研究。由Et4N[RuCl4(CH3CN)2]和Co2(CO)8制备了Et4N[Co3Ru(CO)12]·1/3THF, 它与等摩尔的NOBF4反应得到Co3Ru(CO)11(NO)(1)和Co2Ru(CO)11(5)。簇合物1分别与乙炔、苯基乙炔和二苯基乙炔进一步反应得到(HC≡CH)Co3Ru(CO)9(NO)(2), (PhC≡CH)Co3Ru(CO)9(NO)(3)和(PhC≡CPh)Co3Ru(CO)9(NO)(4)。在上述反应中还分离得到(HC≡CH)Co2Ru(CO)9(6), (PhC≡CH)Co2Ru(CO)9(7)和(PhC≡CPh)Co2Ru(CO)9(8)。对所得族合物1,2,3,4进行了IR, UV,^1H NMR, m.p., 元素分析和单晶X射线衍射分析等性质表征, 簇合物3的晶体属单斜晶系, pα1/n空间群, 晶胞参数为: a=1.1438(9), b=.3033(6), c=1.4345(9)nm, β=100.72(4)°, 每个晶胞中有四个分子。  相似文献   

14.
单氢钌配合物与水和2,2,2-三氟乙醇的作用机理   总被引:1,自引:0,他引:1  
利用原位1H和31P NMR对单氢钌配合物TpRu(PPh3)(CH3CN)H [Tp=hydrotris(pyrazolyl)borate]与H2O和酸性HOCH2CF3的反应进行了研究, 结果显示相应的反应产物分别是TpRu(PPh3)(CH3CN)(OH) 和TpRu(PPh3)(CH3CN)(OCH2CF3). 观察到反应过程中Ru-H…HOH和Ru-H…HOCH2CF3分子间的氢键作用. 提出了生成TpRu(PPh3)(CH3CN)(OH)和TpRu(PPh3)(CH3CN)(OCH2CF3)的不同作用机理. 在水存在下, TpRu(PPh3)(CH3CN)H 与H2O反应, 经过中间体TpRu(PPh3)(H2O)H和TpRu(PPh3)(OH)(η2-H2)生成产物TpRu(PPh3)(CH3CN)(OH). 而TpRu(PPh3)(CH3CN)H与酸性HOCH2CF3反应时, 单氢配体被质子化形成中间体[TpRu(PPh3)(CH3CN)- (η2-H2)](OCH2CF3), 进而转变成产物TpRu(PPh3)(CH3CN)(OCH2CF3). TpRu(PPh3)(CH3CN)(OCH2CF3)与H2作用, 经中间体TpRu(PPh3)(HOCH2CF3)H生成TpRu(PPh3)(η2-H2)H.  相似文献   

15.
在无水乙醇中,使低水合氯化稀土(RE=La, Pr, Nd, Sm)与吡咯烷二硫代氨基甲酸铵(APDC)和1,10-邻二氮菲(σ-phen·H2O)反应,制得其三元固态配合物.用化学分析和元素分析确定它们的组成为RE (C5H8NS2)3(C12H8N2) (RE= La, Pr, Nd, Sm).IR光谱说明RE3+分别与3个PDC-的6个硫原子双齿配位,同时与σ-phen的2个氮原子双齿配位,配位数为8.用精密转动弹热量计测定了它们的恒容燃烧热ΔcU,分别为-17776.94±7.72, -17810.41±7.93, -17762.71±7.91和-17482.42±9.35 kJ·mol-1;并计算了它们的标准摩尔燃烧焓和标准摩尔生成焓,分别为-17792.43±7.72, -17825.90±7.93, -17778.20±7.91, -17497.91±9.35 kJ*mol-1和-83.05±8.60, -64.70±9.40, -104.77±8.78, -388.70±10.13 kJ·mol-1.估算出未研究的同类配合物Ce(C5H8NS2)3(C12H8N2)和Pm(C5H8NS2)3(C12H8N2)的和分别为-17815, -17660 kJ·mol-1和-60, -217 kJ·mol-1.  相似文献   

16.
Rausch等报道由二环戊二烯基二氯化铪与五氟苯基锂在低温、乙醚中按下式反应,得到含σ-碳-铪键的二环戊二烯基二(五氟苯基)铪:(η5-C5H5)2HfCl2+2C6F5Li→(η5-C5H5)2Hf(C6F5)2+2LiClSamuel等用同样反应合成了二环戊二烯基二苯基铪.  相似文献   

17.
C60与亚氨基二乙酸甲酯[NH(CH2COOMe)2]的光化学反应制得2,5-双(甲氧羰基)富勒烯吡咯烷(1), 产率为52% (基于已反应的C60). C60吡咯烷衍生物1与氯乙酸甲酯(ClCH2COOCH3)的N-烃基化反应, 在微波辐射、无溶剂及相转移条件下, 得到2,5-双(甲氧羰基)-N-(甲氧羰基)甲基富勒烯吡咯烷(2), 产率47%(基于C60吡咯烷衍生物1). C60吡咯烷衍生物12用NaH, CH3OH水解后, 经盐酸酸化得相应的二羧酸衍生物3和三羧酸衍生物4, 产率分别为65%和53% (基于C60吡咯烷衍生物12). C60吡咯烷衍生物14的结构由1H NMR, 13C NMR, IR, FAB-MS和元素分析证实. 用电导法测定了C60吡咯烷二羧酸3和三羧酸4钠盐的临界聚集浓度(CAC), 分别为3.58×10-4 mol/L (3)和3.33×10-4 mol/L (4). 这一结果被C60吡咯烷衍生物34, 在临界聚集浓度(CAC)附近的UV-Vis光谱的特征变化所支持. 透射电子显微镜(TEM)和静态光散射(SLS)等方法也被用于检测C60吡咯烷衍生物34在临界聚集浓度(CAC)时的聚集行为, 结果显示, C60吡咯烷衍生物3在缓冲溶液中(0.001 mol/L NaCO3-NaHCO3), 其聚集体粒径的大小(Rg≈21 nm)不同于C60吡咯烷衍生物4 (Rg≈23 nm). C60吡咯烷二羧酸3钠盐的临界聚集浓度(CAC)比C60吡咯烷三羧酸4钠盐的临界聚集浓度(CAC)大, 聚集体粒径大小的不同, 表明C60单加成衍生物加成基团中羧基(COOH)数目的多少对其聚集行为的影响. 用化学发光法分别检测了C60吡咯烷二羧酸3和C60吡咯烷三羧酸4在缓冲溶液(0.05 mol/L NaCO3-NaHCO3)中对邻苯三酚自氧化产生的超氧阴离子(O2·)的清除活性. C60衍生物34对 O2· 的清除呈现有明显的剂量效应, 但当超过一定浓度时(3: ~3.50×10-4 mol/L, 4: ~3.25×10-4 mol/L), 清除效率出现转折, 并下降. 这一现象与电导率测定时出现的CAC现象相一致, 进一步证实了C60吡咯烷二羧酸3和C60吡咯烷三羧酸4在较高浓度的水溶液中有聚集的倾向, 也说明了C60吡咯烷二羧酸3和C60吡咯烷三羧酸4的聚集会影响其清除超氧阴离子(O2·)的活性.  相似文献   

18.
C2H5SPCl2与Co2(CO)8反应的产物经柱层析分离得3条带,第一条为深棕色,经IR谱、1HNMR、谱、元素分析、X光单晶结构分析,确定该带产物为七核钴原子簇CO77-S)(μ4-PSC2H5)(μ-SC2H5)2(μ-CO)2(CO)12,是八面体骨架Co4PS和四面体骨架Co3S结合的松散原子簇合物。  相似文献   

19.
室温下,[Cp2Ti(C≡Cph)2],[Cp2Zr(C≡CPh)2]和[C5H4SiMe3)2Zr(C≡CPh)2]分别与二茂钒作用,合成了钛锆钒异核双金属配合物[Cp2V(μ-η^2:η^4-PhC4Ph)MCp2‘](M=Ti,Zr;Cp‘=C5H5,C5H4SiMe3)。用元素分析、质谱、核磁共振谱、磁矩、红外和拉曼光谱对配合物进行了表征。3个配合物具有相似的磁化率。配合物3的晶体结构分析表明PhC4Ph通过内部2个碳原子键合到Cp2V上,内部2个碳原子和外部2个碳原子均与Cp2‘Zr键合,丁二烯骨架内部的2个碳原子都具有四配位的平面结构。  相似文献   

20.
焦凤英  殷元骐  BRAUNSTEIN  P.  ROSE  J. 《化学学报》1991,49(7):711-717
本文报道Co-Ru簇的合成与表征的研究。由Et4N[RuCl4(CH3CN)2]和Co2(CO)8制备了Et4N[Co3Ru(CO)12]·1/3THF, 它与等摩尔的NOBF4反应得到Co3Ru(CO)11(NO)(1)和Co2Ru(CO)11(5)。簇合物1分别与乙炔、苯基乙炔和二苯基乙炔进一步反应得到(HC≡CH)Co3Ru(CO)9(NO)(2), (PhC≡CH)Co3Ru(CO)9(NO)(3)和(PhC≡CPh)Co3Ru(CO)9(NO)(4)。在上述反应中还分离得到(HC≡CH)Co2Ru(CO)9(6), (PhC≡CH)Co2Ru(CO)9(7)和(PhC≡CPh)Co2Ru(CO)9(8)。对所得族合物1,2,3,4进行了IR, UV,^1H NMR, m.p., 元素分析和单晶X射线衍射分析等性质表征, 簇合物3的晶体属单斜晶系, pα1/n空间群, 晶胞参数为: a=1.1438(9), b=.3033(6), c=1.4345(9)nm, β=100.72(4)°, 每个晶胞中有四个分子。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号