首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three-dimensional lead halide perovskites are known for their excellent optoelectronic properties, making them suitable for photovoltaic and light-emitting applications. Here, we report for the first time the Raman spectra and photoluminescent (PL) properties of recently discovered three-dimensional aziridinium lead halide perovskites (AZPbX3, X = Cl, Br, I), as well as assignment of vibrational modes. We also report diffuse reflection data, which revealed an extended absorption of light of AZPbX3 compared to the MA and FA counterparts and are beneficial for solar cell application. We demonstrated that this behavior is correlated with the size of the organic cation, i.e., the energy band gap of the cubic lead halide perovskites decreases with the increasing size of the organic cation. All compounds show intense PL, which weakens on heating and shifts toward higher energies. This PL is red shifted compared to the FA and MA counterparts. An analysis of the PL data revealed the small exciton binding energy of AZPbX3 compounds (29–56 meV). Overall, the properties of AZPbX3 are very similar to those of the well-known MAPbX3 and FAPbX3 perovskites, indicating that the aziridinium analogues are also attractive materials for light-emitting and solar cell applications.  相似文献   

2.
A supramolecular gel results from the immobilization of solvent molecules on a 3D network of gelator molecules stabilized by various supramolecular interactions that include hydrogen bonding, π–π stacking, van der Waals interactions, and halogen bonding. In a metallogel, a metal is a part of the gel network as a coordinated metal ion (in a discrete coordination complex), as a cross‐linking metal node with a multitopic ligand (in coordination polymer), and as metal nanoparticles adhered to the gel network. Although the field is relatively new, research into metallogels has experienced a considerable upsurge owing to its fundamental importance in supramolecular chemistry and various potential applications. This focus review aims to provide an insight into the development of designing metallogelators. Because of the limited scope, discussions are confined to examples pertaining to metallogelators derived from discrete coordination complexes, organometallic gelators, and coordination polymers. This review is expected to enlighten readers on the current development of designing metallogelators of the abovementioned class of molecules.  相似文献   

3.
Introduction of mechanically interlocked components into actinide‐based metal–organic materials such as polyrotaxanes will generate an entirely new type of inorganic–organic hybrid materials showing more supramolecular encapsulation‐based dynamics. In this work, tetranuclear uranyl‐directed polyrotaxanes (UO2)4O2‐C5A3‐CB6 ( 1 ) and (UO2)4O2‐C6A3‐CB6 ( 2 ), which are the first actinide pseudorotaxanes with high‐nuclearity uranium centers, were obtained through systematic extension of the string spacer in pseudorotaxane ligands from 1,4‐butylene (C4) to 1,5‐pentylene (C5) and 1,6‐hexylene (C6). Both of the as‐synthesized tetranuclear uranyl polyrotaxanes were structurally characterized and analyzed. Considering the structure of UO2‐C4A3‐CB6 and the 1,4‐butylene string spacer, the preference for the uranyl tetramer may be related to the configurational inversion of the pseudorotaxane ligands from trans mode to cis mode on coordination to the uranyl center. Detailed structural analysis suggests that the length of the stretched string molecules for CB6 ‐encapsulated pseudorotaxanes has remarkable effect on the supramolecular inclusion interactions and the configurations of pseudorotaxanes, and should be responsible for the configurational inversion of pseudorotaxane spacers and subsequent distinct changes of the uranyl building units and geometric structures.  相似文献   

4.
5.
6.
7.
8.
Currently, no suitable clinical drugs are available for patients with neurodegenerative diseases complicated by depression. Based on a fusion technique to create effective multi–target–directed ligands (MTDLs), we synthesized a series of (R)–N–(benzo[d]thiazol–2–yl)–2–(1–phenyl–3,4–dihydroisoquinolin–2(1H)–yl) acetamides with substituted benzothiazoles and (S)–1–phenyl–1,2,3,4–tetrahydroisoquinoline. All compounds were tested for their inhibitory potency against monoamine oxidase (MAO) and cholinesterase (ChE) by in vitro enzyme activity assays, and further tested for their specific inhibitory potency against monoamine oxidase B (MAO–B) and butyrylcholinesterase (BuChE). Among them, six compounds (4b–4d, 4f, 4g and 4i) displayed excellent activity. The classical antidepressant forced swim test (FST) was used to verify the in vitro results, revealing that six compounds reduced the immobility time significantly, especially compound 4g. The cytotoxicity of the compounds was assessed by the MTT method and Acridine Orange (AO) staining, with cell viability found to be above 90% at effective compound concentrations, and not toxic to L929 cells reversibility, kinetics and molecular docking studies were also performed using compound 4g, which showed the highest MAO–B and BuChE inhibitory activities. The results of these studies showed that compound 4g binds to the primary interaction sites of both enzymes and has good blood–brain barrier (BBB) penetration. This study provides new strategies for future research on neurodegenerative diseases complicated by depression.  相似文献   

9.
10.
An inorganic–organic hybrid surfactant with a hexavanadate cluster as the polar head group was designed and observed to assemble into micelle structures, which further spontaneously coagulate into a 1D anisotropic structure in aqueous solutions. Such a hierarchical self‐assembly process is driven by the cooperation of varied noncovalent interactions, including hydrophobic, electrostatic, and hydrogen‐bonding interactions. The hydrophobic interaction drives the quick formation of the micelle structure; electrostatic interactions involving counterions leads to the further coagulation of the micelles into larger assemblies. This process is similar to the crystallization process, but the specific counterions and the directional hydrogen bonding lead to the 1D growth of the final assemblies. Since most of the hexavanadates are exposed to the surface, the 1D assembly with nanoscale thickness is a highly efficient heterogeneous catalyst for the oxidation of organic sulfides with appreciable recyclability.  相似文献   

11.
12.
13.
Single‐ and double‐sided functionalized hybrid organic–inorganic Anderson polyoxomolybdates with GaIII and FeIII positioned as central heteroatoms have been synthesized in a mild, two‐step synthesis in an aqueous medium. Compounds 1 – 4 were isolated as hydrated salts, [TBA]3[GaMo6O18(OH)3{(OCH2)3CCH2OH}]×12 H2O ( 1 ) (TBA=tetrabutylammonium), Na3[FeMo6O18{(OCH2)3CCH2OH}2]×11 H2O ( 2 ), [TMA]2[GaMo6O18(OH)3{(OCH2)3CNH3}]×7 H2O ( 3 ) (TMA=tetramethylammonium), and Na[TMA]2[FeMo6O18(OH)3{(OCH2)3CNH3}](OH)×6 H2O ( 4 ). All the compounds were characterized based on single‐crystal X‐ray diffraction (SXRD), FTIR, UV/Vis, thermogravimetric, ESI‐MS, NMR, and elemental analyses. Compound 1 was also crystallized with two smaller organic cations, giving [TMA]3[GaMo6O18(OH)3{(OCH2)3CCH2OH}]×n H2O ( 5 ) and [GDM]3[GaMo6O18(OH)3{(OCH2)3CCH2OH}]×n H2O ( 6 ) (GDM=guanidinium) and were characterized based on UV/Vis, NMR, FTIR, and elemental analyses. The use of these compounds as additives in macromolecular crystallography was investigated by examining their hydrolytic stability by using ESI‐MS in a pH range of 4 to 9. Sodium dodecyl sulfate‐polyacrylamide gel electrophoresis (SDS‐PAGE) analysis showed that BSA remains intact in a solution containing up to 100 equivalents of 1 or 4 over more than four days at 20 °C. Zeta potential measurements demonstrate that 1 – 4 induce charge inversions on the positively charged surface of BSA (1 mg mL?1) with concentrations starting as low as 1.29 mM for compounds 1 and 2 , which have the highest negative surface charge.  相似文献   

14.
Density functional theory was applied to the calculation of molecular structures of N-methyl formamide (NMF), N,N-dimethyl formamide (DMF), and N,N-dimethyl acetamide (DMA). DFT calculations on NMF, DMF, and DMA were performed using a combination of the local functional of Vosko, Wilk, and Nusair (VWN) with the nonlocal exchange functional of Becke and the nonlocal correlational functional of Lee, Yang, and Parr (BLYP). The adiabatic connection method (ACM) of Becke has also been used, for the first time, for the calculation of molecular structures of NMF, DMF, and DMA. The calculated molecular structures are in excellent agreement with the experimental geometries of NMF and DMA derived from gas-phase electron-diffraction studies. Sparse experimental data on the gas-phase geometry of DMF reported in the literature compares well with the DFT results on DMF. DFT emerges as a powerful method to calculate molecular structures.  相似文献   

15.
Chitosan–NiO nanocomposite (CNC) is shown to be a potential dielectric material with promising properties. CNCs containing NiO nanoparticles (0.2, 0.6, 1, 2, 5 wt %) are prepared through chemical methods. The inclusion of NiO nanoparticles in the chitosan matrix is confirmed by scanning electron microscopy (SEM) and X‐ray diffraction. The morphology of the NiO nanoparticles and the nanocomposites is investigated by transmission electron microscopy and SEM, respectively. Positron annihilation lifetime spectroscopy (PALS) and the coincidence Doppler broadening (CDB) technique are used to quantify the free volume and molecular packing in the nanocomposites. The triplet‐state positronium lifetime and the corresponding intensity show the changes in nanohole size, density, and size distribution as a function of NiO loading. Small‐angle X‐ray scattering indicates that the NiO aggregates are identical in all the CNCs. The momentum density distribution obtained from CDB measurements excludes the possibility of a contribution of vacant spaces (pores) available in NiO aggregates to the free volume of nanocomposites upon determination by using PALS. The results show systematic variation in free‐volume properties and nano‐level molecular packing as a function of NiO loading, which is presumed to play a vital role in determining the various properties of the nanocomposites.  相似文献   

16.
The {W36} isopolyoxotungstate cluster provides a stable inorganic molecular platform for the binding of inorganic and organic guest molecules. This is achieved by a binding pocket formed by six terminal oxo ligands located in the central cavity of the all‐inorganic cation binding host. Previously it was shown that the cluster can specifically bind primary amines and importantly, functionalized diamines through a combination of electrostatic and hydrogen bonding interactions. Here we transform this assembly strategy to utilize the binding of long‐chain alkyldiammonium guest cations to physically define the supramolecular structure of the clusters with respect to each other and demonstrate the structure direction as a function of alkyl chain length. The systematic variation of the chain length gives access to five supramolecular assemblies which were all fully characterized using single crystal XRD, TGA, 1H NMR, and elemental analysis. In compound 1 , diprotonated 1,8‐diaminooctane molecules link the {W36} clusters into infinite 1D zigzag chains, whereas compounds 2 and 3 feature trimeric {W36} assemblies directly connected through protonated 1,9‐diaminononane ( 2 ) or 1,10‐diaminodecane ( 3 ) linkers . Compound 4 contains dumb‐bell shaped dimeric units as a result of direct center‐to‐center linkages between the {W36} clusters formed by protonated 1,12‐diaminododecane. In compound 5 , triply protonated bis(hexamethylene)triamine was employed to obtain linear 1D chains of directly connected {W36} cluster units.  相似文献   

17.
The in vivo potency of polyphosphazene immunoadjuvants is inherently linked to the ability of these ionic macromolecules to assemble with antigenic proteins in aqueous solutions and form physiologically stable supramolecular complexes. Therefore, in-depth knowledge of interactions in this biologically relevant system is a prerequisite for a better understanding of mechanism of immunoadjuvant activity. Present study explores a self-assembly of polyphosphazene immunoadjuvant—PCPP and a model antigen—lysozyme in a physiologically relevant environment—saline solution and neutral pH. Three analytical techniques were employed to characterize reaction thermodynamics, water-solute structural organization, and supramolecular dimensions: isothermal titration calorimetry (ITC), water proton nuclear magnetic resonance (wNMR), and dynamic light scattering (DLS). The formation of lysozyme–PCPP complexes at near physiological conditions was detected by all methods and the avidity was modulated by a physical state and dimensions of the assemblies. Thermodynamic analysis revealed the dissociation constant in micromolar range and the dominance of enthalpy factor in interactions, which is in line with previously suggested model of protein charge anisotropy and small persistence length of the polymer favoring the formation of high affinity complexes. The paper reports advantageous use of wNMR method for studying protein-polymer interactions, especially for low protein-load complexes.  相似文献   

18.
19.
20.
Making use of N-P-acetamidobenzenesulfonyl-glycine acid (abbreviated as abglyH2),two transitional metal complexes [Zn(abglyH)(phen)2]ClO4·H2O (1) and Co(abglyH)2(bipy)2(H2O)2 (2) (phen = 1,10-phenanthroline,bipy = 4,4'-bipyridine) have been synthesized under mild conditions and characterized by IR,elemental analysis and X-ray diffraction analysis. Complex 1 is a monomeric compound which is further assembled by intermolecular hydrogen bonds and π-π interaction into a 2-D supramolecular network. Complex 2 is also a monomeric compound and further connected by intermolecular hydrogen bonds to form a 2-D supramolecular network. Fluorescent analysis shows that complex 1 has an emissive maximum at 364 nm in the solution state at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号