首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work considers a two-user multiple access channel in which both users have Age of Information (AoI)-oriented traffic with different characteristics. More specifically, the first user has external traffic and cannot control the generation of status updates, and the second user monitors a sensor and transmits status updates to the receiver according to a generate-at-will policy. The receiver is equipped with multiple antennas and the transmitters have single antennas; the channels are subject to Rayleigh fading and path loss. We analyze the average AoI of the first user for a discrete-time first-come-first-served (FCFS) queue, last-come-first-served (LCFS) queue, and queue with packet replacement. We derive the AoI distribution and the average AoI of the second user for a threshold policy. Then, we formulate an optimization problem to minimize the average AoI of the first user for the FCFS and LCFS with preemption queue discipline to maintain the average AoI of the second user below a given level. The constraints of the optimization problem are shown to be convex. It is also shown that the objective function of the problem for the first-come-first-served queue policy is non-convex, and a suboptimal technique is introduced to effectively solve the problem using the algorithms developed for solving a convex optimization problem. Numerical results illustrate the performance of the considered optimization algorithm versus the different parameters of the system. Finally, we discuss how the analytical results of this work can be extended to capture larger setups with more than two users.  相似文献   

2.
The Age of Information (AoI) measures the freshness of information and is a critic performance metric for time-sensitive applications. In this paper, we consider a radio frequency energy-harvesting cognitive radio network, where the secondary user harvests energy from the primary users’ transmissions and opportunistically accesses the primary users’ licensed spectrum to deliver the status-update data pack. We aim to minimize the AoI subject to the energy causality and spectrum constraints by optimizing the sensing and update decisions. We formulate the AoI minimization problem as a partially observable Markov decision process and solve it via dynamic programming. Simulation results verify that our proposed policy is significantly superior to the myopic policy under different parameter settings.  相似文献   

3.
Motivated by big data applications in the Internet of Things (IoT), abundant information arrives at the fusion center (FC) waiting to be processed. It is of great significance to ensure data freshness and fidelity simultaneously. We consider a wireless sensor network (WSN) where several sensor nodes observe one metric and then transmit the observations to the FC using a selection combining (SC) scheme. We adopt the age of information (AoI) and minimum mean square error (MMSE) metrics to measure the data freshness and fidelity, respectively. Explicit expressions of average AoI and MMSE are derived. After that, we jointly optimize the two metrics by adjusting the number of sensor nodes. A closed-form sub-optimal number of sensor nodes is proposed to achieve the best freshness and fidelity tradeoff with negligible errors. Numerical results show that using the proposed node number designs can effectively improve the freshness and fidelity of the transmitted data.  相似文献   

4.
This paper investigates the status updating policy for information freshness in Internet of things (IoT) systems, where the channel quality is fed back to the sensor at the beginning of each time slot. Based on the channel quality, we aim to strike a balance between the information freshness and the update cost by minimizing the weighted sum of the age of information (AoI) and the energy consumption. The optimal status updating problem is formulated as a Markov decision process (MDP), and the structure of the optimal updating policy is investigated. We prove that, given the channel quality, the optimal policy is of a threshold type with respect to the AoI. In particular, the sensor remains idle when the AoI is smaller than the threshold, while the sensor transmits the update packet when the AoI is greater than the threshold. Moreover, the threshold is proven to be a non-increasing function of channel state. A numerical-based algorithm for efficiently computing the optimal thresholds is proposed for a special case where the channel is quantized into two states. Simulation results show that our proposed policy performs better than two baseline policies.  相似文献   

5.
The age of information (AoI) has been widely used to quantify the information freshness in real-time status update systems. As the AoI is independent of the inherent property of the source data and the context, we introduce a mutual information-based value of information (VoI) framework for hidden Markov models. In this paper, we investigate the VoI and its relationship to the AoI for a noisy Ornstein–Uhlenbeck (OU) process. We explore the effects of correlation and noise on their relationship, and find logarithmic, exponential and linear dependencies between the two in three different regimes. This gives the formal justification for the selection of non-linear AoI functions previously reported in other works. Moreover, we study the statistical properties of the VoI in the example of a queue model, deriving its distribution functions and moments. The lower and upper bounds of the average VoI are also analysed, which can be used for the design and optimisation of freshness-aware networks. Numerical results are presented and further show that, compared with the traditional linear age and some basic non-linear age functions, the proposed VoI framework is more general and suitable for various contexts.  相似文献   

6.
In this paper, a new combinatorial structure is introduced for image encryption, which has an excellent encryption effect on security and efficiency. An n-transversal in a Latin square has the function of classifying all the matrix’s positions, and it can provide a pair of orthogonal Latin squares. Employing an n-transversal of a Latin square, we can permutate all the pixels of an image group by group for the first time, then use two Latin squares for auxiliary diffusion based on a chaotic sequence, and finally, make use of a pair of orthogonal Latin squares to perform the second scrambling. The whole encryption process is “scrambling–diffusion–scrambling”. The experimental results indicated that this algorithm passed various tests and achieved a secure and fast encryption effect, which outperformed many of the latest papers. The final information entropy was very close to 8, and the correlation coefficient was approximately 0. All these tests verified the robustness and practicability of the proposed algorithm.  相似文献   

7.
The age of information (AoI) metric was proposed to measure the freshness of messages obtained at the terminal node of a status updating system. In this paper, the AoI of a discrete time status updating system with probabilistic packet preemption is investigated by analyzing the steady state of a three-dimensional discrete stochastic process. We assume that the queue used in the system is Ber/Geo/1/2*/η, which represents that the system size is 2 and the packet in the buffer can be preempted by a fresher packet with probability η. Instead of considering the system’s AoI separately, we use a three-dimensional state vector (n,m,l) to simultaneously track the real-time changes of the AoI, the age of a packet in the server, and the age of a packet waiting in the buffer. We give the explicit expression of the system’s average AoI and show that the average AoI of the system without packet preemption is obtained by letting η=0. When η is set to 1, the mean of the AoI of the system with a Ber/Geo/1/2* queue is obtained as well. Combining the results we have obtained and comparing them with corresponding average continuous AoIs, we propose a possible relationship between the average discrete AoI with the Ber/Geo/1/c queue and the average continuous AoI with the M/M/1/c queue. For each of two extreme cases where η=0 and η=1, we also determine the stationary distribution of AoI using the probability generation function (PGF) method. The relations between the average AoI and the packet preemption probability η, as well as the AoI’s distribution curves in two extreme cases, are illustrated by numerical simulations. Notice that the probabilistic packet preemption may occur, for example, in an energy harvest (EH) node of a wireless sensor network, where the packet in the buffer can be replaced only when the node collects enough energy. In particular, to exhibit the usefulness of our idea and methods and highlight the merits of considering discrete time systems, in this paper, we provide detailed discussions showing how the results about continuous AoI are derived by analyzing the corresponding discrete time system and how the discrete age analysis is generalized to the system with multiple sources. In terms of packet service process, we also propose an idea to analyze the AoI of a system when the service time distribution is arbitrary.  相似文献   

8.
By calculating the Kullback–Leibler divergence between two probability measures belonging to different exponential families dominated by the same measure, we obtain a formula that generalizes the ordinary Fenchel–Young divergence. Inspired by this formula, we define the duo Fenchel–Young divergence and report a majorization condition on its pair of strictly convex generators, which guarantees that this divergence is always non-negative. The duo Fenchel–Young divergence is also equivalent to a duo Bregman divergence. We show how to use these duo divergences by calculating the Kullback–Leibler divergence between densities of truncated exponential families with nested supports, and report a formula for the Kullback–Leibler divergence between truncated normal distributions. Finally, we prove that the skewed Bhattacharyya distances between truncated exponential families amount to equivalent skewed duo Jensen divergences.  相似文献   

9.
Although commercial motion-capture systems have been widely used in various applications, the complex setup limits their application scenarios for ordinary consumers. To overcome the drawbacks of wearability, human posture reconstruction based on a few wearable sensors have been actively studied in recent years. In this paper, we propose a deep-learning-based sparse inertial sensor human posture reconstruction method. This method uses bidirectional recurrent neural network (Bi-RNN) to build an a priori model from a large motion dataset to build human motion, thereby the low-dimensional motion measurements are mapped to whole-body posture. To improve the motion reconstruction performance for specific application scenarios, two fundamental problems in the model construction are investigated: training data selection and sparse sensor placement. The problem of deep-learning training data selection is to select independent and identically distributed (IID) data for a certain scenario from the accumulated imbalanced motion dataset with sufficient information. We formulate the data selection into an optimization problem to obtain continuous and IID data segments, which comply with a small reference dataset collected from the target scenario. A two-step heuristic algorithm is proposed to solve the data selection problem. On the other hand, the optimal sensor placement problem is studied to exploit most information from partial observation of human movement. A method for evaluating the motion information amount of any group of wearable inertial sensors based on mutual information is proposed, and a greedy searching method is adopted to obtain the approximate optimal sensor placement of a given sensor number, so that the maximum motion information and minimum redundancy is achieved. Finally, the human posture reconstruction performance is evaluated with different training data and sensor placement selection methods, and experimental results show that the proposed method takes advantages in both posture reconstruction accuracy and model training time. In the 6 sensors configuration, the posture reconstruction errors of our model for walking, running, and playing basketball are 7.25°, 8.84°, and 14.13°, respectively.  相似文献   

10.
In this paper, we derive information-theoretic performance limits for secure communications over two classes of discrete memoryless relay channels. We consider two different communication scenarios over a four node wireless network comprising a source–destination pair, a relay node and a malicious node eavesdropping on the link between the relay and the destination. In both scenarios, the relay is (1) opportunistic in the sense that, it utilizes the communication opportunity to transmit its own message to the destination; and (2) constrained to secure its communication from the external eavesdropper. We present a novel achievability scheme, namely layered coding, to simultaneously deal with cooperation, cognition and confidentiality. We derive inner bounds on the capacity region for the two communication scenarios, and characterize the rate-penalty for satisfying the security constraints on the messages. Outer bounds are derived using auxiliary random variables which enable single-letter characterization. We also compare the opportunistic-relay models to the classical cognitive radio network setup. Finally, we discuss some of the advantages and drawbacks of our coding strategy in comparison to those in the existing literature, which provides interesting insights into the relative merits of the methods employed in this work for obtaining the capacity bounds.  相似文献   

11.
The purpose of the work is to find the dependence of growth rate of magnetization centers of various types on their surrounding by other nucleation centers in a synthetic Pt/Co/Ir/Co/Pt ferrimagnet with perpendicular magnetic anisotropy. The following four types of nucleation centers exist in a sample with two ferromagnetic layers of different thicknesses: P+ centers correspond to the regions where the magnetizations of the thick and thin Co layers are directed along an applied field (↑↑); P– centers are the regions where the magnetizations of the layers are opposite to an applied field (↓↓); and AP+ and AP– centers correspond to the regions where the magnetizations of the thick and thin Co layers are opposite to each other and the total magnetic moment is along (↑↓) or opposite to (↓↑) an applied field, respectively. P– nucleation centers are found to be surrounded by AP+ regions in any field and exhibit a monotonic field dependence of their boundary. The field dependence of the growth rate of AP– nucleation centers is nonmonotonic since, as the field increases, they are surrounded by AP+ nucleation centers, AP+ and P– regions, and only P– nucleation centers in strong fields.  相似文献   

12.
As communication systems evolve to better cater to the needs of machine-type applications such as remote monitoring and networked control, advanced perspectives are required for the design of link layer protocols. The age of information (AoI) metric has firmly taken its place in the literature as a metric and tool to measure and control the data freshness demands of various applications. AoI measures the timeliness of transferred information from the point of view of the destination. In this study, we experimentally investigate AoI of multiple packet flows on a wireless multi-user link consisting of a transmitter (base station) and several receivers, implemented using software-defined radios (SDRs). We examine the performance of various scheduling policies under push-based and pull-based communication scenarios. For the push-based communication scenario, we implement age-aware scheduling policies from the literature and compare their performance with those of conventional scheduling methods. Then, we investigate the query age of information (QAoI) metric, an adaptation of the AoI concept for pull-based scenarios. We modify the former age-aware policies to propose variants that have a QAoI minimization objective. We share experimental results obtained in a simulation environment as well as on the SDR testbed.  相似文献   

13.
This paper addresses the optimization of distributed compression in a sensor network with partial cooperation among sensors. The widely known Chief Executive Officer (CEO) problem, where each sensor has to compress its measurements locally in order to forward them over capacity limited links to a common receiver is extended by allowing sensors to mutually communicate. This extension comes along with modified statistical dependencies among involved random variables compared to the original CEO problem, such that well-known outer and inner bounds do not hold anymore. Three different inter-sensor communication protocols are investigated. The successive broadcast approach allows each sensor to exploit instantaneous side-information of all previously transmitting sensors. As this leads to dimensionality problems for larger networks, a sequential point-to-point communication scheme is considered forwarding instantaneous side-information to only one successor. Thirdly, a two-phase transmission protocol separates the information exchange between sensors and the communication with the common receiver. Inspired by algorithmic solutions for the original CEO problem, the sensors are optimized in a greedy manner. It turns out that partial communication among sensors improves the performance significantly. In particular, the two-phase transmission can reach the performance of a fully cooperative CEO scenario, where each sensor has access to all measurements and the knowledge about all channel conditions. Moreover, exchanging instantaneous side-information increases the robustness against bad Wyner–Ziv coding strategies, which can lead to significant performance losses in the original CEO problem.  相似文献   

14.
Timely status updates are critical in remote control systems such as autonomous driving and the industrial Internet of Things, where timeliness requirements are usually context dependent. Accordingly, the Urgency of Information (UoI) has been proposed beyond the well-known Age of Information (AoI) by further including context-aware weights which indicate whether the monitored process is in an emergency. However, the optimal updating and scheduling strategies in terms of UoI remain open. In this paper, we propose a UoI-optimal updating policy for timely status information with resource constraint. We first formulate the problem in a constrained Markov decision process and prove that the UoI-optimal policy has a threshold structure. When the context-aware weights are known, we propose a numerical method based on linear programming. When the weights are unknown, we further design a reinforcement learning (RL)-based scheduling policy. The simulation reveals that the threshold of the UoI-optimal policy increases as the resource constraint tightens. In addition, the UoI-optimal policy outperforms the AoI-optimal policy in terms of average squared estimation error, and the proposed RL-based updating policy achieves a near-optimal performance without the advanced knowledge of the system model.  相似文献   

15.
In this paper, we consider a scenario where the base station (BS) collects time-sensitive data from multiple sensors through time-varying and error-prone channels. We characterize the data freshness at the terminal end through a class of monotone increasing functions related to Age of information (AoI). Our goal is to design an optimal policy to minimize the average age penalty of all sensors in infinite horizon under bandwidth and power constraint. By formulating the scheduling problem into a constrained Markov decision process (CMDP), we reveal the threshold structure for the optimal policy and approximate the optimal decision by solving a truncated linear programming (LP). Finally, a bandwidth-truncated policy is proposed to satisfy both power and bandwidth constraint. Through theoretical analysis and numerical simulations, we prove the proposed policy is asymptotic optimal in the large sensor regime.  相似文献   

16.
In this paper we consider a bipartite system composed of two subsystems each coupled to its own thermal environment. Based on a collision model, we mainly study whether the approximation (i.e., the inter-system coupling is ignored when modeling the system–environment interaction) is valid or not. We also address the problem of heat transport unitedly for both excitation-conserving system–environment interactions and non-excitation-conserving system–environment interactions. For the former interaction, as the inter-system interaction strength increases, at first this approximation gets worse as expected, but then counter-intuitively gets better even for a stronger inter-system coupling. For the latter interaction with asymmetry, this approximation gets progressively worse. In this case we realize a perfect thermal rectification, and we cannot find an apparent rectification effect for the former interaction. Finally and more importantly, our results show that whether this approximation is valid or not is closely related to the quantum correlations between the subsystems, i.e., the weaker the quantum correlations, the more justified the approximation and vice versa.  相似文献   

17.
修晓明  董莉  高亚军  迟锋 《中国物理 B》2008,17(11):3991-3995
In this paper, we present a multi-partner communication network protocol. The supervisor prepares numerous Einstein-Podolsky-Rosen (EPR) pairs and auxiliary qubits. He then performs a controlled-NOT(CNOT) gate operation on one qubit of each EPR pair and an auxiliary, which induces the entanglement between the EPR pair and the auxiliary. The supervisor keeps one qubit sequence in his laboratory and sends the others to the outside world. After security approval, the network can be constructed successfully, which can be applied to quantum secret sharing and quantum secure direct communication.  相似文献   

18.
Although most list-ranking frameworks are based on multilayer perceptrons (MLP), they still face limitations within the method itself in the field of recommender systems in two respects: (1) MLP suffer from overfitting when dealing with sparse vectors. At the same time, the model itself tends to learn in-depth features of user–item interaction behavior but ignores some low-rank and shallow information present in the matrix. (2) Existing ranking methods cannot effectively deal with the problem of ranking between items with the same rating value and the problem of inconsistent independence in reality. We propose a list ranking framework based on linear and non-linear fusion for recommendation from implicit feedback, named RBLF. First, the model uses dense vectors to represent users and items through one-hot encoding and embedding. Second, to jointly learn shallow and deep user–item interaction, we use the interaction grabbing layer to capture the user–item interaction behavior through dense vectors of users and items. Finally, RBLF uses the Bayesian collaborative ranking to better fit the characteristics of implicit feedback. Eventually, the experiments show that the performance of RBLF obtains a significant improvement.  相似文献   

19.
Automated essay scoring aims to evaluate the quality of an essay automatically. It is one of the main educational application in the field of natural language processing. Recently, Pre-training techniques have been used to improve performance on downstream tasks, and many studies have attempted to use pre-training and then fine-tuning mechanisms in an essay scoring system. However, obtaining better features such as prompts by the pre-trained encoder is critical but not fully studied. In this paper, we create a prompt feature fusion method that is better suited for fine-tuning. Besides, we use multi-task learning by designing two auxiliary tasks, prompt prediction and prompt matching, to obtain better features. The experimental results show that both auxiliary tasks can improve model performance, and the combination of the two auxiliary tasks with the NEZHA pre-trained encoder produces the best results, with Quadratic Weighted Kappa improving 2.5% and Pearson’s Correlation Coefficient improving 2% on average across all results on the HSK dataset.  相似文献   

20.
In this paper, we construct a fully discrete and decoupled Crank–Nicolson Leap-Frog (CNLF) scheme for solving the modified phase field crystal model (MPFC) with long-range interaction. The idea of CNLF is to treat stiff terms implicity with Crank–Nicolson and to treat non-stiff terms explicitly with Leap-Frog. In addition, the scalar auxiliary variable (SAV) method is used to allow explicit treatment of the nonlinear potential, then, these technique combines with CNLF can lead to the highly efficient, fully decoupled and linear numerical scheme with constant coefficients at each time step. Furthermore, the Fourier spectral method is used for the spatial discretization. Finally, we show that the CNLF scheme is fully discrete, second-order decoupled and unconditionally stable. Ample numerical experiments in 2D and 3D are provided to demonstrate the accuracy, efficiency, and stability of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号