首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
2.
As a variant of the twin-field quantum key distribution (TF-QKD), the sending-or-not twin-field quantum key distribution (SNS TF-QKD) is famous for its higher tolerance of misalignment error, in addition to the capacity of surpassing the rate–distance limit. Importantly, the free-space SNS TF-QKD will guarantee the security of the communications between mobile parties. In the paper, we first discuss the influence of atmospheric turbulence (AT) on the channel transmittance characterized by the probability distribution of the transmission coefficient (PDTC). Then, we present a method called prefixed-threshold real-time selection (P-RTS) to mitigate the interference of AT on the free-space SNS TF-QKD. The simulations of the free-space SNS TF-QKD with and without P-RTS are both given for comparison. The results showed that it is possible to share the secure key by using the free-space SNS TF-QKD. Simultaneously, the P-RTS method can make the free-space SNS TF-QKD achieve better and more stable performance at a short distance.  相似文献   

3.
Twin-field quantum key distribution (TF-QKD) has attracted considerable attention because it can exceed the basic rate-distance limit without quantum repeaters. Its variant protocol, sending or not-sending quantum key distribution (SNS-QKD), not only fixes the security vulnerability of TF-QKD, but also can tolerate large misalignment errors. However, the current SNS-QKD protocol is based on the active decoy-state method, which may lead to side channel information leakage when multiple light intensities are modulated in practice. In this work, we propose a passive decoy-state SNS-QKD protocol to further enhance the security of SNS-QKD. Numerical simulation results show that the protocol not only improves the security in source, but also retains the advantages of tolerating large misalignment errors. Therefore, it may provide further guidance for the practical application of SNS-QKD.  相似文献   

4.
Twin-field quantum key distribution(TF-QKD) is a disruptive innovation which is able to overcome the rate-distance limit of QKD without trusted relays. Since the proposal of the first TF-QKD protocol, theoretical and experimental breakthroughs have been made to enhance its ability. However, there still exist some practical issues waiting for settlement. In this paper, we examine the performances of asymmetric TF-QKD protocol with unstable light sources and limited data sizes. The statistical fluctuations of the parameters are estimated employing Azuma's inequality. Through numerical simulations, we compare the secret key rates of the asymmetric TF-QKD protocol with different data sizes and variant intensity fluctuation magnitudes. Our results demonstrate that both statistical and intensity fluctuations have significant impacts on the performance of asymmetric TF-QKD.  相似文献   

5.
《Physics letters. A》2020,384(16):126322
Quantum key distribution (QKD) is a promising application to establish unconditional secure communications by quantum mechanics. However, its widespread application still faces a great challenge, that is, the fundamental linear key-rate constraint called Pirandola-Laurenza-Ottaviani-Banchi (PLOB) bound. Recently, twin-field QKD (TF-QKD) was proposed (Lucamarini et al., 2018 [4]), it overcomes the constraint mentioned above. However, the original TF-QKD is based on the phase-encoding strategy, which requires active alignment. In this paper, we improve the original TF-QKD with the photon orbital angular momentum (OAM), and propose a novel reference frame independent protocol to overcome the reference frame dependence. No more alignment procedure is needed, and the intrinsic misalignment errors are eliminated by utilizing the rotation-invariance of OAM photons. Besides, the security performance is also improved.  相似文献   

6.
The twin-field quantum key distribution (TF-QKD) protocol and its variations have been proposed to overcome the linear Pirandola–Laurenza–Ottaviani–Banchi (PLOB) bound. One variation called phase-matching QKD (PM-QKD) protocol employs discrete phase randomization and the phase post-compensation technique to improve the key rate quadratically. However, the discrete phase randomization opens a loophole to threaten the actual security. In this paper, we first introduce the unambiguous state discrimination (USD) measurement and the photon-number-splitting (PNS) attack against PM-QKD with imperfect phase randomization. Then, we prove the rigorous security of decoy state PM-QKD with discrete phase randomization. Simulation results show that, considering the intrinsic bit error rate and sifting factor, there is an optimal discrete phase randomization value to guarantee security and performance. Furthermore, as the number of discrete phase randomization increases, the key rate of adopting vacuum and one decoy state approaches infinite decoy states, the key rate between discrete phase randomization and continuous phase randomization is almost the same.  相似文献   

7.
Wen-Ting Li 《中国物理 B》2022,31(5):50310-050310
The transmission loss of photons during quantum key distribution (QKD) process leads to the linear key rate bound for practical QKD systems without quantum repeaters. Phase matching quantum key distribution (PM-QKD) protocol, an novel QKD protocol, can overcome the constraint with a measurement-device-independent structure, while it still requires the light source to be ideal. This assumption is not guaranteed in practice, leading to practical secure issues. In this paper, we propose a modified PM-QKD protocol with a light source monitoring, named PM-QKD-LSM protocol, which can guarantee the security of the system under the non-ideal source condition. The results show that our proposed protocol performs almost the same as the ideal PM-QKD protocol even considering the imperfect factors in practical systems. PM-QKD-LSM protocol has a better performance with source fluctuation, and it is robust in symmetric or asymmetric cases.  相似文献   

8.

The interferometer-based, time-frequency encoding quantum key distribution (TF-QKD) scheme is a promising way to loosen up the restrict resolution requirement for the temporal measurement in TF-QKD protocol. However, the utilization of delay interferometers in the existing schemes causes lower efficiency of the frequency measurement, so it would decrease the secure key generation rate and the error tolerance. In order to improve this imperfection, we propose two kinds of schemes, one is the pre-balance TF scheme (PB-TF), in which Alice actively adjusts the probability distributions of sending photons encoded in two bases. The other one is the non-delay interferometer based TF scheme (NDI-TF), in this scheme the signals are converted from serial to parallel before entering the interferometers which eliminates the extra loss of the frequency measurement with delay interferometers. We theoretically verify the performance improvement of both schemes and discuss their advantages under the practical application scenario. The simulation results show that both of the schemes can improve the secure key generation rate and the error tolerance, but the NDI-TF scheme has higher secure key generation rate especially in the high-dimensional encoding QKD systems. As for the low-dimensional system, the PB-TF scheme is preferred since its performance is comparable to the NDI-TF scheme but with low cost and easy to implement.

  相似文献   

9.
As an essential application of quantum mechanics in classical cryptography, quantum secret sharing has become an indispensable component of quantum internet. Recently, a differential phase shift quantum secret sharing protocol using a twin field has been proposed to break the linear rate-distance boundary. However, this original protocol has a poor performance over channels with asymmetric transmittances. To make it more practical, we present a differential phase shift quantum secret sharing protocol with asymmetric source intensities and give the security proof of our protocol against individual attacks. Taking finite-key effects into account, our asymmetric protocol can theoretically obtain the key rate two orders of magnitude higher than that of the original protocol when the difference in length between Alice’s channel and Bob’s is fixed at 14 km. Moreover, our protocol can provide a high key rate even when the difference is quite large and has great robustness against finite-key effects. Therefore, our work is meaningful for the real-life applications of quantum secret sharing.  相似文献   

10.
Huai-Zhi Wu 《Physics letters. A》2008,372(16):2802-2805
We propose a protocol to realize quantum logic gates for two remote qubits via entanglement swapping. According to the scheme of quantum repeater presented by H.-J. Briegel et al., we can complete long-distance communication and computation. Compared with previous schemes through noisy channels, our protocol can overcome the limitation that error probability scales exponentially with the length of the channel. We illustrate this protocol in cavity QED system, but the idea can also be realized in other physical systems.  相似文献   

11.
The conductance of a clean normal metal spanning between two superconductors (SNS structure) has been investigated. It is found that the conductance fluctuates periodically with the phase difference of two superconductors. When the pairing symmetry in one side of the superconductors is dx2-y2, the fluctuation period tends to be π instead of 2π, and the phase dependence of its conductance depends strongly on the orientation of the junction in contradistinction to the s-wave case. It can be used as a new method to determine the pairing symmetry of the high-Tc superconductors.  相似文献   

12.
We have experimentally demonstrated a decoy-state quantum key distribution scheme (QKD) with a heralded single-photon source based on parametric down-conversion. We used a one-way Bennett-Brassard 1984 protocol with a four states and one-detector phase-coding scheme, which is immune to recently proposed time-shift attacks, photon-number splitting attacks, and can also be proven to be secure against Trojan horse attacks and any other standard individual or coherent attacks. In principle, the setup can tolerate the highest losses or it can give the highest secure key generation rate under fixed losses compared with other practical schemes. This makes it a quite promising candidate for future quantum key distribution systems.  相似文献   

13.
Round-robin differential phase shift(RRDPS) is a novel quantum key distribution protocol which can bound information leakage without monitoring signal disturbance. In this work, to decrease the effect of the vacuum component in a weak coherent pulses source, we employ a practical decoy-state scheme with heralded singlephoton source for the RRDPS protocol and analyze the performance of this method. In this scheme, only two decoy states are needed and the yields of single-photon state and multi-photon states, as well as the bit error rates of each photon states, can be estimated. The final key rate of this scheme is bounded and simulated over transmission distance. The results show that the two-decoy-state method with heralded single-photon source performs better than the two-decoy-state method with weak coherent pulses.  相似文献   

14.
The high source intensity of the Spallation Neutron Source (SNS), together with efficient detectors and large detector solid angles, now makes possible neutron experiments with much smaller sample volumes than previously were practical. Nested Kirkpatrick–Baez supermirror optics provide a promising and efficient way to further decrease the useable neutron sample size by focusing polychromatic neutrons into microbeams. Because the optics are nondispersive, they are ideal for spallation sources and for polychromatic and wide bandpass experiments on reactor sources. Theoretical calculations indicate that nested mirrors can preserve source brilliance at the sample for small beams and for modest divergences that are appropriate for diffraction experiments. Although the flux intercepted by a sample can be similar with standard beam-guided approaches, the signal-to-background is much improved with small beams on small samples. Here we describe the design, calibration and performance of a nested neutron mirror pair for the Spallation Neutrons At Pressure (SNAP) beamline at the SNS. High-pressure neutron diffraction is but one example of a large class of neutron experiments that will benefit from spatially-resolved microdiffraction.  相似文献   

15.
测量侧边抛磨光纤(side polished fiber,SPF)的包层剩余厚度对其应用有重要的指导意义,现今的测量方法均有所不足,现提出一种基于数字全息技术的测量方法。利用单模光纤纤芯折射率比包层折射率高的特点,基于数字全息成像技术,通过角谱传播法对二维全息图进行相位重构,并通过精确最小二乘法解相位包裹,得到侧边抛磨光纤的相位分布图。根据重构的相位分布图,进一步运用相关的边缘提取算法处理得到侧边抛磨光纤包层剩余厚度。实验测量结果与电子扫描电镜(SEM)测量结果相比,测量相对误差小于0.5%。这种测量方法是一种直接测量方法,减小了间接测量法中由于光纤不对称以及SPF轮廓边缘衍射所带来的测量误差,为侧边抛磨光纤包层剩余厚度的无损、在线测量提供了一种新的途径。同时,此方法还可应用于测量其他特种光纤,例如光子晶体光纤、微纳光纤等。  相似文献   

16.
Side-channel-free quantum key distribution   总被引:1,自引:0,他引:1  
Quantum key distribution (QKD) offers the promise of absolutely secure communications. However, proofs of absolute security often assume perfect implementation from theory to experiment. Thus, existing systems may be prone to insidious side-channel attacks that rely on flaws in experimental implementation. Here we replace all real channels with virtual channels in a QKD protocol, making the relevant detectors and settings inside private spaces inaccessible while simultaneously acting as a Hilbert space filter to eliminate side-channel attacks. By using a quantum memory we find that we are able to bound the secret-key rate below by the entanglement-distillation rate computed over the distributed states.  相似文献   

17.
Measurement-device-independent quantum key distribution(MDI-QKD) is immune to detector side channel attacks, which is a crucial security loophole problem in traditional QKD. In order to relax a key assumption that the sources are trusted in MDI-QKD, an MDI-QKD protocol with an untrusted source has been proposed. For the security of MDI-QKD with an untrusted source, imperfections in the practical experiment should also be taken into account. In this paper, we analyze the effects of fluctuations of internal transmittance on the security of a decoy-state MDI-QKD protocol with an untrusted source. Our numerical results show that both the secret key rate and the maximum secure transmission distance decrease when taken fluctuations of internal transmittance into consideration. Especially, they are more sensitive when Charlie's mean photon number per pulse is smaller. Our results emphasize that the stability of correlative optical devices is important for practical implementations.  相似文献   

18.
沈咏  邹宏新 《物理学报》2010,59(3):1473-1480
对一种结合离散调制和反向协调,适用于长距离传输的连续变量量子密钥分发四态协议的安全性进行了严格证明.这种协议中Alice发送的态与高斯调制协议中的有一定差异,这种差异可以等价成信道衰减和额外噪声.另外,由于Alice不可能做到精确调制,这会导致其发送的相干态中含有噪声.把这种调制引起的噪声看作光源的噪声,并推导出了在光源噪声不能被窃听者所利用的条件下的安全码率的下界.为了避免实验上快速、随机的控制本地振荡光的相位,还将无开关协议和四态协议相结合,分析了其安全性.  相似文献   

19.
Recently, a novel kind of quantum key distribution called the round-robin differential phase-shift(RRDPS)protocol was proposed, which bounds the amount of leakage without monitoring signal disturbance. The protocol can be implemented by a weak coherent source. The security of this protocol with a simply characterized source has been proved. The application of a common phase shift can improve the secret key rate of the protocol. In practice, the randomized phase is discrete and the secret key rate is deviated from the continuous case. In this study, we analyze security of the RRDPS protocol with discrete-phase-randomized coherent state source and bound the secret key rate. We fix the length of each packet at 32 and 64, then simulate the secret key rates of the RRDPS protocol with discrete-phase randomization and continuous-phase randomization. Our simulation results show that the performance of the discrete-phase randomization case is close to the continuous counterpart with only a small number of discrete phases. The research is practically valuable for experimental implementation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号