共查询到20条相似文献,搜索用时 15 毫秒
1.
Itai Schlesinger Natalia E. Powers-Riggs Jenna L. Logsdon Yue Qi Stephen A. Miller Roel Tempelaar Ryan M. Young Michael R. Wasielewski 《Chemical science》2020,11(35):9532
Organic donor–acceptor (D–A) co-crystals have attracted much interest due to their important optical and electronic properties. Co-crystals having ⋯DADA⋯ π-stacked morphologies are especially interesting because photoexcitation produces a charge-transfer (CT) exciton, D˙+–A˙−, between adjacent D–A molecules. Although several studies have reported on the steady-state optical properties of this type of CT exciton, very few have measured the dynamics of its formation and decay in a single D–A co-crystal. We have co-crystallized a peri-xanthenoxanthene (PXX) donor with a N,N-bis(3-pentyl)-2,5,8,11-tetraphenylperylene-3,4:9,10-bis(dicarboximide) (Ph4PDI) acceptor to give an orthorhombic PXX–Ph4PDI ⋯DADA⋯ π-stacked co-crystal with a CT transition dipole moment that is perpendicular to the transition moments for Sn ← S0 excitation of PXX and Ph4PDI. Using polarized, broadband, femtosecond pump–probe microscopy, we have determined that selective photoexcitation of Ph4PDI in the single co-crystal results in CT exciton formation within the 300 fs instrument response time. At early times (0.3 ≤ t ≤ 500 ps), the CT excitons decay with a t−1/2 dependence, which is attributed to CT biexciton annihilation within the one-dimensional ⋯DADA⋯ π-stacks producing high-energy, long-lived (>8 ns) electron–hole pairs in the crystal. These energetic charge carriers may prove useful in applications ranging from photovoltaics and opto-electronics to photocatalysis.Femtosecond transient absorption microscopy of donor–acceptor single co-crystals shows that photogenerated charge transfer excitons in one-dimensional donor–acceptor π stacks annihilate to produce high-energy, long-lived electrons and holes. 相似文献
2.
The wave functions of donor–acceptor pairs before and after electron transfer are written as a product of the electron-vibrational wave functions of the donor and acceptor with allowance for the change in the number of electrons on these particles by one after transition. In this approximation, the energy of the initial state is represented as a sum of the electron-vibrational levels of the donor and acceptor and that of the final state as a sum of donor cation and acceptor anion levels. Formulas for the electron transfer probability of symmetrical and nonsymmetrical donor–acceptor pairs have been derived that express the dependence of this process on the ionization potential difference of the donor and the electron affinity of the acceptor, on the vibrational frequencies of these particles, and on temperature. 相似文献
3.
4.
Photoinduced charge separation in donor–acceptor conjugates plays a pivotal role in technology breakthroughs, especially in the areas of efficient conversion of solar energy into electrical energy and fuels. Extending the lifetime of the charge separated species is a necessity for their practical utilization, and this is often achieved by following the mechanism of natural photosynthesis where the process of electron/hole migration occurs distantly separating the radical ion pairs. Here, we hypothesize and demonstrate a new mechanism to stabilize the charge separated states via the process of electron exchange among the different acceptor entities in multimodular donor–acceptor conjugates. For this, star-shaped, central triphenylamine derived, dimethylamine–tetracyanobutadiene conjugates have been newly designed and characterized. Electron exchange was witnessed upon electroreduction in conjugates having multiple numbers of electron acceptors. Using ultrafast spectroscopy, the occurrence of excited state charge separation, and the effect of electron exchange in prolonging the lifetime of charge separated states in the conjugates having multiple acceptors have been successfully demonstrated. This work constitutes the first example of stabilizing charge-separated states via the process of electron exchange.The significance of electron exchange in stabilizing the charge-separated state is revealed in multi-modular donor–acceptor conjugates. 相似文献
5.
N. Santhanamoorthi K. Senthilkumar P. Kolandaivel 《International journal of quantum chemistry》2011,111(14):3904-3914
The quantum mechanical calculations were performed to study the effect of geometrical fluctuations of peptide on charge transfer in model oligopeptides linked between donor and acceptor molecules. The charge transfer parameters have been calculated based on the density functional theory method. Results show that the overall charge transfer in peptide mediated donor–acceptor complexes is determined by the conformations and chain length of the intermediate peptide bridge. The analysis of excess charge distribution show that the localization of an excess positive and negative charge are strongly depend on the conformations and chain length of the donor–bridge‐acceptor system. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011 相似文献
6.
The intersystem crossing decay constants from the 3B2u state into the ground state of anthracene-d10 in a phenazine crystal have been determined by magnetic resonance techniques at 1.5°K both at high magnetic field and, by a parameterization procedure, at zero magnetic field. A comparison of the anthracene-d10 zero-field results with those for anthracene-h10 show the effects of deuterium substitution to be largest for the in-plane spin levels of the anthracene triplet state. 相似文献
7.
Ramírez CL Pegoraro CN Filevich O Bruttomeso A Etchenique R Parise AR 《Inorganic chemistry》2012,51(3):1261-1268
We describe in this paper the properties of [Ru(II/III)(bpy)(2)ClL](+1/+2) and [Ru(II/III)(bpy)(2)L(2)](+2/+3). L = ditolyl-3-pyridylamine (dt3pya) is a redox active ligand related to triarylamines, which is very similar to 3-aminopyridine except for the reversible redox behavior. The monosubstituted complex shows a metal-to-ligand charge-transfer (MLCT) at 502 nm, and reversible waves in acetonitrile at E(0)(Ru(III/II)) = 1.07 V, E(0)(L(+/0)) = 1.46 V (NHE). The disubstituted complex shows an MLCT at 461 nm, a photorelease of dt3pya with quantum yield of 0.11 at 473 nm, and two reversible one-electron overlapped waves at 1.39 V associated with one of the ligands (1.37 V) and Ru(III/II) (1.41 V). Further oxidation of the second ligand at 1.80 V forms a 2,2'-bipiridine derivative, in an irreversible reaction similar to dimerization of triphenylamine to yield tetraphenylbenzidine. In the dioxidized state, the spectroelectrochemistry of the disubstituted complex shows a ligand-to-ligand charge transfer at 1425 nm, with a transition moment of 1.25 ? and an effective two-state coupling of 1200 cm(-1). No charge transfer between ligands was observed when Ru was in a 2+ oxidation state. We propose that a superexchange process would be involved in ligand-metal-ligand charge transfer, when ligands and metals are engaged in complementary π interactions, as in metal-ligand-metal complexes. Best orbital matching occurs when metallic donor fragments are combined with acceptor ligands and vice versa. In our case, Ru(III) bridge (an acceptor) and two dt3pya (donors, one of them being oxidized) made the complex a Robin-Day Class II system, while the Ru(II) bridge (a donor, reduced) was not able to couple two dt3pya (also donors, one oxidized). 相似文献
8.
Dmitriy Dovzhenko Maksim Lednev Konstantin Mochalov Ivan Vaskan Yury Rakovich Alexander Karaulov Igor Nabiev 《Chemical science》2021,12(38):12794
Resonant interaction between excitonic transitions of molecules and localized electromagnetic field allows the formation of hybrid light–matter polaritonic states. This hybridization of the light and the matter states has been shown to significantly alter the intrinsic properties of molecular ensembles placed inside the optical cavity. Here, we have observed strong coupling of excitonic transition in a pair of closely located organic dye molecules demonstrating an efficient donor-to-acceptor resonance energy transfer with the mode of a tuneable open-access cavity. Analysing the dependence of the relaxation pathways between energy states in this system on the cavity detuning, we have demonstrated that predominant strong coupling of the cavity photon to the exciton transition in the donor dye molecule can lead not only to an increase in the donor–acceptor energy transfer, but also to an energy shift large enough to cause inversion between the energy states of the acceptor and the mainly donor lower polariton energy state. Furthermore, we have shown that the polariton-assisted donor–acceptor chromophores'' role reversal or “carnival effect” not only changes the relative energy levels of the donor–acceptor pair, but also makes it possible to manipulate the energy flow in the systems with resonant dipole–dipole interaction and direct energy transfer from the acceptor to the mainly donor lower polariton state. Our experimental data are the first confirmation of the theoretically predicted possibility of polariton-assisted energy transfer reversal in FRET systems, thus paving the way to new avenues in FRET-imaging, remote-controlled chemistry, and all-optical switching.Polariton-assisted donor–acceptor role reversal in resonant energy transfer between organic dyes tagged with the terminus of the closed oligonucleotide-based molecular beacon strongly coupled to electromagnetic modes of a tuneable microcavity. 相似文献
9.
Manhong Li Siqi Liu Haoshi Bao Qini Li Yi-Hui Deng Tian-Yu Sun Leifeng Wang 《Chemical science》2022,13(17):4909
Organoboron compounds are very important building blocks which can be applied in medicinal, biological and industrial fields. However, direct borylation in a metal free manner has been very rarely reported. Herein, we described the successful direct borylation of haloarenes under mild, operationally simple, catalyst-free conditions, promoted by irradiation with visible light. Mechanistic experiments and computational investigations indicate the formation of an excited donor–acceptor complex with a −3.12 V reduction potential, which is a highly active reductant and can facilitate single-electron-transfer (SET) with aryl halides to produce aryl radical intermediates. A two-step one-pot method was developed for site selective aromatic C–H bond borylation. The protocol''s good functional group tolerance enables the functionalization of a variety of biologically relevant compounds, representing a new application of aryl radicals merged with photochemistry.We reported a facile metal-free conversion of aryl halides to the corresponding boronic esters catalysed by an in situ formed donor–acceptor complex. A two-step one-pot method was also developed for site selective aromatic C–H bond borylation. 相似文献
10.
Ultrafast excited-state relaxation dynamics of a nonlinear optical (NLO) dye, (S)-(-)-1-(4-nitrophenyl)-2-pyrrolidinemethanol (NPP), was carried out under the regime of femtosecond fluorescence up-conversion measurements in augmentation with quantum chemical calculations. The primary concern was to trace the relaxation pathways which guide the depletion of the first singlet excited state upon photoexcitation, in such a way that it is virtually nonfluorescent. Ground- and excited-state (singlet and triplet) potential energy surfaces were calculated as a function of the -NO(2) torsional coordinate, which revealed the perpendicular orientation of -NO(2) in the excited state relative to the planar ground-state conformation. The fluorescence transients in the femtosecond regime show biexponential decay behavior. The first time component of a few hundred femtoseconds was ascribed to the ultrafast twisted intramolecular charge transfer (TICT). The occurrence of charge transfer (CT) is substantiated by the large dipole moment change during excitation. The construction of intensity- and area-normalized time-resolved emission spectra (TRES and TRANES) of NPP in acetonitrile exhibited a two-state emission on behalf of decay of the locally excited (LE) state and rise of the CT state with a Stokes shift of 2000 cm(-1) over a time scale of 1 ps. The second time component of a few picoseconds is attributed to the intersystem crossing (isc). In highly polar solvents both the processes occur on a much faster time scale compared to that in nonpolar solvents, credited to the differential stability of energy states in different polarity solvents. The shape of frontier molecular orbitals in the excited state dictates the shift of electron density from the phenyl ring to the -NO(2) group and is attributed to the charge-transfer process taking place in the molecule. The viscosity dependence of relaxation dynamics augments the proposition of considering the -NO(2) group torsional motion as the main excited-state relaxation coordinate. 相似文献
11.
Olefins are prevalent substrates and functionalities. The synthesis of olefins from readily available starting materials such as alcohols, amines and carboxylic acids is of great significance to address the sustainability concerns in organic synthesis. Metallaphotoredox-catalyzed defunctionalizations were reported to achieve such transformations under mild conditions. However, all these valuable strategies require a transition metal catalyst, a ligand or an expensive photocatalyst, with the challenges of controlling the region- and stereoselectivities remaining. Herein, we present a fundamentally distinct strategy enabled by electron donor–acceptor (EDA) complexes, for the selective synthesis of olefins from these simple and easily available starting materials. The conversions took place via photoactivation of the EDA complexes of the activated substrates with alkali salts, followed by hydrogen atom elimination from in situ generated alkyl radicals. This method is operationally simple and straightforward and free of photocatalysts and transition-metals, and shows high regio- and stereoselectivities.A visible-light-induced defunctionalization strategy for the synthesis of olefins by using easily available alcohols, amines and carboxylic acids as starting materials is demonstrated. 相似文献
12.
Colvin MT Ricks AB Scott AM Smeigh AL Carmieli R Miura T Wasielewski MR 《Journal of the American Chemical Society》2011,133(5):1240-1243
A covalent, fixed-distance donor-bridge-acceptor (D-B-A) molecule was synthesized that upon photoexcitation undergoes ultrafast charge separation to yield a radical ion pair (RP) in which the spin-spin exchange interaction (2J) between the two radicals is sufficiently large to result in preferential RP intersystem crossing to the highest-energy RP eigenstate (T(+1)) at the 350 mT magnetic field characteristic of X-band (9.5 GHz) EPR spectroscopy. This behavior is unprecedented in covalent D-B-A molecules, and is evidenced by the time-resolved EPR (TREPR) spectrum at X-band of (3*)D-B-A derived from RP recombination, which shows all six canonical EPR transitions polarized in emission (e,e,e,e,e,e). In contrast, when the RP is photogenerated in a 3400 mT magnetic field, the TREPR triplet spectrum at W-band (94 GHz) of (3*)D-B-A displays the (a,e,e,a,a,e) polarization pattern characteristic of a weakly coupled RP precursor, similar to that observed in photosynthetic reaction center proteins, and indicates a switch to selective population of the lower-energy T(0) eigenstate. 相似文献
13.
B. L. Burrows A. T. Amos S. G. Davison 《International journal of quantum chemistry》1999,72(3):207-220
Using Laplace transforms, analytical approximations are obtained in a simple way for the probabilities of charge transfer between donor and acceptor states coupled by a bridge. As a test, these are compared with accurate and numerical calculations when the bridge is treated as a standard diatomic Huckel chain, whose energies lie in two separate bands, the lower (upper) band being completely full (empty). The analytical approximations are found to be generally accurate and provide useful insight into the charge transfer process. ©1999 John Wiley & Sons, Inc. Int J Quant Chem 72: 207–220, 1999 相似文献
14.
Sren Knuts Boris F. Minaev Olav Vahtras Hans gren 《International journal of quantum chemistry》1995,55(1):23-34
The intersystem crossing (ISC ) between the lowest triplet and singlet states occurring in the reaction of atomic oxygen with ethylene was studied. The importance of spin–orbit coupling (SOC ) in oxirane biradicals (?R′R″—CRR*—?) is stressed through calculations where the spin–orbit matrix elements over the full Breit–Pauli SOC operator has been obtained in the singlet–triplet crossing region. The calculations are performed with a multiconfigurational linear response approach, in which the spin–orbit couplings are obtained from triplet response functions using differently correlated singlet-reference-state wave functions. Computational results confirm earlier semiempirical predictions of the spin–orbit coupling as an important mechanism behind the ring opening of oxiranes and addition of oxygen O(3P) atoms to alkenes. © 1995 John Wiley & Sons, Inc. 相似文献
15.
16.
17.
《Journal of Molecular Structure》1998,450(1-3):47-58
The direct consequences of the presence of ground state orientational isomers of molecular complexes are discussed in terms of the adiabatic potential energy surfaces calculated for the ground and excited states of electron donor–acceptor complexes of tetracyanobenzene with toluene and with mesitylene. Some earlier experimental results that confirm the presence of orientational isomers are also recalled and reviewed, together with the recent results for molecular exciplexes under supersonic molecular beam conditions. Exploration of potential energy surfaces shows that the relaxation pathways of excited Franck–Condon states of the ground state isomers may differ considerably and in liquid solution may be sensitive to physical conditions, which in fact is observed in time-resolved fluorescence spectra of the electron donor–acceptor systems under consideration, upon excitation of high-energy Van der Waals orientational isomers. It is concluded that, in weak electron donor–acceptor complexes in liquid solutions, the role of such isomers may be limited, but it may become crucial for the kinetics and dynamics of excited states if the system is simultaneously capable of forming an exciplex. 相似文献
18.
Haidong Liu Lifang Tian Hui Wang Zhi-Qiang Li Chi Zhang Fei Xue Chao Feng 《Chemical science》2022,13(9):2686
gem-Difluorocyclopropane diester is disclosed as a new type of donor–acceptor cyclopropane, which smoothly participates in (3 + 2)-cycloadditions with various aldehydes and ketones. This work represents the first application of gem-difluorine substituents as an unconventional donor group for activating cyclopropane substrates in catalytic cycloaddition reactions. With this method, a wide variety of densely functionalized gem-difluorotetrahydrofuran skeletons, which are otherwise difficult to prepare, could be readily assembled in high yields under mild reaction conditions. Computational studies show that the cleavage of the C–C bond between the difluorine and diester moieties occurs upon a SN2-type attack of the carbonyl oxygen.A new type of donor–acceptor cyclopropane with gem-difluorine as an unconventional donor group undergoes (3 + 2)-cycloadditions with various aldehydes/ketones, affording densely functionalized gem-difluorotetrahydrofurans. 相似文献
19.
Computational studies on optoelectronic and charge transfer properties of some perylene‐based donor‐π‐acceptor systems for dye sensitized solar cell applications 下载免费PDF全文
Taniya Manzoor Summera Asmi Saba Niaz Altaf Hussain Pandith 《International journal of quantum chemistry》2017,117(5)
We report DFT studies on some perylene‐based dyes for their electron transfer properties in solar cell applications. The study involves modeling of different donor‐π‐acceptor type sensitizers, with perylene as the donor, furan/pyrrole/thiophene as the π‐bridge and cyanoacrylic group as the acceptor. The effect of different π‐bridges and various substituents on the perylene donor was evaluated in terms of opto‐electronic and photovoltaic parameters such as HOMO‐LUMO energy gap, λmax, light harvesting efficiency(LHE), electron injection efficiency (Øinject), excited state dye potential (Edye*), reorganization energy(λ), and free energy of dye regeneration (). The effect of various substituents on the dye–I2 interaction and hence recombination process was also evaluated. We found that the furan‐based dimethylamine derivative exhibits a better balance of the various optical and photovoltaic properties. Finally, we evaluated the overall opto‐electronic and transport parameters of the TiO2‐dye assembly after anchoring the dyes on the model TiO2 cluster assembly. 相似文献
20.
Piotr Bojarski Micha Sadownik Simeonika Rangeowa-Jankowska Leszek Kuak Katarzyna Dasiak 《Chemical physics letters》2008,456(4-6):166-169
Energy transfer was studied for donor–mediator–acceptor systems in uniaxially stretched polymer films. The systems differ in the ability of mediator transition moment to orientate in the matrix. It was found that acceptor fluorescence remains polarized in the stretched matrix irrespectively of mediator. This means that information on the orientation of electric vector of the exciting light was conserved after energy transfer. In disordered system sensibilized fluorescence of mediator and acceptor is strongly depolarized. The effect of transition moments correlation on κ2 in the stretched matrix is presented using Monte-Carlo simulation. 相似文献