首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Solid State Ionics》1987,23(3):179-182
Lithium gallium silicates, Li1−xGa1−xSi2+xO6: 0.03 < x < 0.37, with a beta-spodumene structure, have a low Li+ ion conductivity, ca. 10−9 ω−1 cm−1 at 400 K rising to ca. 10−3 ω−1 cm−1 by 1000 K, that changes little with composition. The phase, LiGaSiO4, with an alpha-eucryptite structure, exhibits mainly electronic conductivity, but at a low level, ca. 10−8 ω−1 cm−1 at 600 K, rising to ca. 10−5 ω−1 cm−1 at 1000 K.  相似文献   

2.
Infrared reflection spectra of single crystals of BeSO4·4H2O and BeSO4·4D2O have been obtained in polarized light at 300°K and at 14°K in the region between 4000 cm?1 and 300 cm?1. By a Kronig-Kramers analysis, the frequencies of the infrared active transitions have been calculated. These transitions are attributed to internal vibrations of the water molecules and sulfate ions and, in the region between 1000 cm?1 and 300 cm?1, especially to internal and external vibrations of the tetrahedral Be++·4aqu-complexes. The vibrational modes of these complexes consist of a superposition of translational and librational modes of the water molecules and translational modes of the central Be++-ion. The vibrational frequencies and normal modes of this complex have been calculated in a central-force model, and force-constants have been determined by fitting the calculated frequencies to the observed spectra. The calculations have shown that the modes, which comprise mainly translational motions of the water molecules, are strongly coupled with librational motions of the water molecules. On the other hand, there exist pure librational modes with practically no admixture of translational motions. The optimum sets of force constants for the BeSO4·4H2O crystal and the BeSO4·4D2O crystal differ in a manner which can be understood under the assumption that the dimensions of the Be(D2O)4 complex are about 0.1 Å larger than those of the Be(H2O)4 complex. Some arguments supporting this conclusion will be discussed.  相似文献   

3.
Far infrared reflection spectra of ZnxHg1−xSe with x = 0 to 0.4 showed characteristic of two TO-phonon modes behavior and the plasmon-LO phonon coupling in the region from 20 to 500 cm−1 at 5 and 300 K. The composition dependence of TO modes on the frequency is linear for the HgSe-like mode TO1 and constant for the ZnSe-like mode TO2. The additional TO mode due to clustering effect is observed at 113 cm−1. The plasmon-LO phonon coupled modes are explained well by our model taken into account the two-mode behavior and the contribution of interband transitions in dynamic dielectric function.  相似文献   

4.
《Solid State Communications》1987,64(8):1167-1169
We report the very far-infrared absorption spectra of the mixed-crystals Cd1-xZnxTe for small x in the temperature range of 4.2K–150K and the wavenumber region of 20cm−1–100cm−1. The quasi-local mode induced by ZnTe in CdTe and CdTe-like 2TA two-phonon creations are observed, to be best of our knowledge, for the first time. The frequencies of the modes are estimated by using the mass-defect model combined with Green's functions calculations. Besides, the temperature dependence of the absorption peak is well explained in the light of the characteristics of the modes.  相似文献   

5.
Raman spectra of brandholzite Mg[Sb2(OH)12]·6H2O were studied, complemented with infrared spectra, and related to the structure of the mineral. An intense Raman sharp band at 618 cm−1 is attributed to the SbO symmetric stretching mode. The low‐intensity band at 730 cm−1 is ascribed to the SbO antisymmetric stretching vibration. Low‐intensity Raman bands were found at 503, 526 and 578 cm−1. Corresponding infrared bands were observed at 527, 600, 637, 693, 741 and 788 cm−1. Four Raman bands observed at 1043, 1092, 1160 and 1189 cm−1 and eight infrared bands at 963, 1027, 1055, 1075, 1108, 1128, 1156 and 1196 cm−1 are assigned to δ SbOH deformation modes. A complex pattern resulting from the overlapping band of the water and hydroxyl units is observed. Raman bands are observed at 3240, 3383, 3466, 3483 and 3552 cm−1; infrared bands at 3248, 3434 and 3565 cm−1. The Raman bands at 3240 and 3383 cm−1 and the infrared band at 3248 cm−1 are assigned to water‐stretching vibrations. The two higher wavenumber Raman bands observed at 3466 and 3552 cm−1 and two infrared bands at 3434 and 3565 cm−1 are assigned to the stretching vibrations of the hydroxyl units. Observed Raman and infrared bands in the OH stretching region are associated with O‐H···O hydrogen bonds and their lengths 2.72, 2.79, 2.86, 2.88 and 3.0 Å (Raman) and 2.73, 2.83 and 3.07 Å (infrared). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
The infrared reflectivity spectra of spinel type mixed crystals Zn1−xCdxCr2S4 have been measured from 40 to 900 cm−1. Four or five bands were observed at both end members in the region of intermediate composition. The three bands in higher energy show one-mode behaviour and the other two bands show two-mode behaviour. The concentration dependences of these mode frequencies are interpreted by a model proposed already, in which the 2 basic units and the 6 force constants are contained. By comparing the force constants associated with the Zn-site in several spinels, it is suggested that the two-mode behaviour arises from the large difference in the force constants between the two end members. The Eg (260 cm−1) and T2g (160 cm−1) Raman modes for ZnCr2S4 were also observed and used for the determination of the force constants.  相似文献   

7.
The phonon dispersions of graphene and graphene layers are theoretically investigated within fifth‐nearest‐neighbor force‐constant approach. Based on their symmetry groups, the number of Raman‐ and infrared‐active modes at the Γ point is given. Interatomic force constants are recalculated by fitting them to experimental phonon energy dispersion curves. Wavenumbers of optically active modes are presented as a function of number of layers (n). Our calculated results reproduce well the experimental data of G peak for graphene (1587 cm−1) and graphite (1581.6 cm−1) and clearly give the relation that ωG = 1581.6 + 11/(1 + n1.6). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Raman spectroscopy, complemented with infrared spectroscopy, was used to study the uranyl carbonate mineral voglite. The mineral has the formula Ca2Cu2+ [(UO2)(CO3)3](CO3)6H2O, and bands attributed to these vibrating units are readily identified in the Raman spectrum. Symmetric stretching modes at 836 and 1094 cm−1 are assigned to ν1(UO2)2+ and ν1(CO3)2− units, respectively. The ν3 antisymmetric stretching modes of (UO2)2+ are not observed in the Raman spectrum but may be readily observed in the infrared spectrum at 898 cm−1. The ν3 antisymmetric stretching mode of (CO3)2− is observed in the Raman spectrum at 1369 cm−1 as a low intensity band as is also the ν3(CO3)2− infrared modes at 1362, 1425, 1509 and 1566 cm−1. No ν2(CO3)2− Raman bending modes are observed for voglite. The Raman band at 749 cm−1 and the two infrared bands at 747 and 709 cm−1 are assigned to the ν4(CO3)2− bending modes. U O bond and O H…O bond lengths in the structure of voglite were inferred from the infrared and Raman spectra. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
Raman spectroscopy complemented with infrared spectroscopy has been used to study a series of selected natural halogenated carbonates from different origins, including bastnasite, parisite and northupite. The position of CO32− symmetric stretching vibration varies with the mineral composition. An additional band for northupite at 1107 cm−1 is observed. Raman spectra of bastnasite, parisite and northupite show single bands at 1433, 1420 and 1554 cm−1, respectively, assigned to the ν3 (CO3)2− asymmetric stretching mode. The observation of additional Raman bands for the ν3 modes for some halogenated carbonates is significant in that it shows distortion of the CaO6 octahedron. No ν2 Raman bending modes are observed for these minerals. The band is observed in the infrared spectra, and multiple ν2 modes at 844 and 867 cm−1 are observed for parisite. A single intense infrared band is found at 879 cm−1 for northupite. Raman bands are observed forthe carbonate ν4 in‐phase bending modes at 722 cm−1 for bastnasite, 736 and 684 cm−1 for parisite and 714 cm−1 for northupite. Multiple bands are observed in the OH stretching region for selected bastansites and parisites, indicating the presence of water and OH units in the mineral structure. The presence of such bands brings into question the actual formula of these halogenated carbonate minerals. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
Magnesium minerals are important for understanding the concept of geosequestration. One method of studying the hydrated hydroxy magnesium carbonate minerals is through vibrational spectroscopy. A combination of Raman and infrared spectroscopy has been used to study the mineral hydromagnesite. An intense band is observed at 1121 cm−1, attributed to the CO32−ν1 symmetric stretching mode. A series of infrared bands at 1387, 1413 and 1474 cm−1 are assigned to the CO32−ν3 antisymmetric stretching modes. The CO32−ν3 antisymmetric stretching vibrations are extremely weak in the Raman spectrum and are observed at 1404, 1451, 1490 and 1520 cm−1. A series of Raman bands at 708, 716, 728 and 758 cm−1 are assigned to the CO32−ν2 in‐plane bending mode. The Raman spectrum in the OH stretching region is characterized by bands at 3416, 3516 and 3447 cm−1. In the infrared spectrum, a broad band is found at 2940 cm−1, which is assigned to water stretching vibrations. Infrared bands at 3430, 3446, 3511, 2648 and 3685 cm−1 are attributed to MgOH stretching modes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
The mixed anion mineral dixenite has been studied by Raman spectroscopy, complemented with infrared spectroscopy. The Raman spectrum of dixenite shows bands at 839 and 813 cm−1 assigned to the (AsO3)3− symmetric and antisymmetric stretching modes. The most intense Raman band of dixenite is the band at 526 cm−1 and is assigned to the ν2 AsO33− bending mode. DFT calculations enabled the calculation of the position of AsO22− symmetric stretching mode at 839 cm−1, the antisymmetric stretching mode at 813 cm−1, and the deformation mode at 449 cm−1. The Raman bands at 1026 and 1057 cm−1 are assigned to the SiO42− symmetric stretching vibrations and those at 1349 and 1386 cm−1 to the SiO42− antisymmetric stretching vibrations. Both Raman and infrared spectra indicate the presence of water in the structure of dixenite. This brings into question the commonly accepted formula of dixenite as CuMn2+14Fe3+(AsO3)5(SiO4)2(AsO4)(OH)6. The formula may be better written as CuMn2+14Fe3+(AsO3)5(SiO4)2(AsO4)(OH)6·xH2O. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Polarized Raman measurements were recorded on a monoclinic brushite (CaHPO4.2H2O) crystal in the 800–1200 cm−1 spectral range, corresponding to the P O stretching modes. This study is a continuation of the investigation of the phosphate stretching modes observed in polarized infrared reflectance spectra of brushite crystal. In such ionic non‐centrosymmetric crystals, the splitting between the transverse and longitudinal components of the optic vibrations was observed in the polarized Raman spectra recorded at several scattering geometries. A″ symmetry modes of the brushite crystal were measured. Using a simple model based on the symmetry of the PO4 group, the Raman intensities of the stretching modes are calculated and compared with experimental bands. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
Insight into the unique structure of hydrotalcites (HTs) has been obtained using Raman spectroscopy. Gallium‐containing HTs of formula Zn4 Ga2(CO3)(OH)12 · xH2O (2:1 ZnGa‐HT), Zn6 Ga2(CO3)(OH)16 · xH2O (3:1 ZnGa‐HT) and Zn8 Ga2(CO3)(OH)18 · xH2O (4:1 ZnGa‐HT) have been successfully synthesised and characterised by X‐ray diffraction (XRD) and Raman spectroscopy. The d(003) spacing varies from 7.62 Å for the 2:1 ZnGa‐HT to 7.64 Å for the 3:1 ZnGa‐HT. The 4:1 ZnGa‐HT showed a decrease in the d(003) spacing, compared to the 2:1 and 3:1 compounds. Raman spectroscopy complemented with selected infrared data has been used to characterise the synthesised gallium‐containing HTs. Raman bands observed at around 1050, 1060 and 1067 cm−1 are attributed to the symmetric stretching modes of the (CO32−) units. Multiple ν3 (CO32−) antisymmetric stretching modes are found between 1350 and 1520 cm−1, confirming multiple carbonate species in the HT structure. The splitting of this mode indicates that the carbonate anion is in a perturbed state. Raman bands observed at 710 and 717 cm−1 and assigned to the ν4 (CO32−) modes support the concept of multiple carbonate species in the interlayer. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Raman spectroscopy has been used to study vanadates in the solid state. The molecular structure of the vanadate minerals vésigniéite [BaCu3(VO4)2(OH)2] and volborthite [Cu3V2O7(OH)2·2H2O] have been studied by Raman spectroscopy and infrared spectroscopy. The spectra are related to the structure of the two minerals. The Raman spectrum of vésigniéite is characterized by two intense bands at 821 and 856 cm−1 assigned to ν1 (VO4)3− symmetric stretching modes. A series of infrared bands at 755, 787 and 899 cm−1 are assigned to the ν3 (VO4)3− antisymmetric stretching vibrational mode. Raman bands at 307 and 332 cm−1 and at 466 and 511 cm−1 are assigned to the ν2 and ν4 (VO4)3− bending modes. The Raman spectrum of volborthite is characterized by the strong band at 888 cm−1, assigned to the ν1 (VO3) symmetric stretching vibrations. Raman bands at 858 and 749 cm−1 are assigned to the ν3 (VO3) antisymmetric stretching vibrations; those at 814 cm−1 to the ν3 (VOV) antisymmetric vibrations; that at 508 cm−1 to the ν1 (VOV) symmetric stretching vibration and those at 442 and 476 cm−1 and 347 and 308 cm−1 to the ν4 (VO3) and ν2 (VO3) bending vibrations, respectively. The spectra of vésigniéite and volborthite are similar, especially in the region of skeletal vibrations, even though their crystal structures differ. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
《Infrared physics》1985,25(3):531-541
Sodalite absorption bands in the 50–350 cm−1 region were studied using Fourier transform spectroscopy. Vibrational modes were identified using chemical substitution, H2 and vacuum-annealing, and coloration studies. A bromosodalite band at 294 cm−1 was assigned to an Si—O—Al mode based on Ge substitutions for Si. A bromosodalite band at 200 cm−1 is assigned to an Na—cage vibration based on previous H2annealing studies and chemical substitution of Ge for Si, Ga for Al and Cl and I for Br. A 107 cm−1 band is the Na—Br related vibration, and substitution of 100% Cl for Br moved this band to 111 cm−1, H2 and vacuum-annealing studies show a correlation between the amount of Br removed from bromosodalite during annealing and the area of the 107 cm−1 band. A band at 68 cm−1 is the Na—Br mode based on 100% substitution of Cl for Br. Coloration studies in the 50–150 cm−1 region show no changes attributable to F-center formation.  相似文献   

16.
The experimental and theoretical study on the structures and vibrations of 5‐fluoro‐salicylic acid and 5‐chloro‐salicylic acid (5‐FSA and 5‐ClSA, C7H5FO3 and C7H5ClO3) is presented. The Fourier transform infrared spectra (4000–400 cm−1) and the Fourier transform Raman spectra (4000–50 cm−1) of the title molecules in the solid phase were recorded. The molecular structures, vibrational wavenumbers, infrared intensities, Raman intensities and Raman scattering activities were calculated for a pair of molecules linked by the intermolecular O H···O hydrogen bond. The geometrical parameters and energies of 5‐FSA and 5ClSA were obtained for all eight conformers/isomers from density functional theory (DFT) (B3LYP) with 6‐311++G(d,p) basis set calculations. The computational results identified the most stable conformer of 5‐FSA and 5‐ClSA as the C1 form. The complete assignments were performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. The spectroscopic and theoretical results were compared with the corresponding properties for 5‐FSA and 5‐ClSA monomers and dimer of C1 conformer. The optimized bond lengths, bond angles and calculated wavenumbers showed the best agreement with the experimental results. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
The infrared spectrum of the ν6 asymmetric deformation band of hydrogen peroxide (H2O2) was studied in the region 1100–1350 cm−1 using the two techniques of Fourier transform spectroscopy at 0.02 cm−1 resolution and tunable diode laser spectroscopy at Doppler-limited resolution. Details of the wavelength calibration procedures adopted are discussed. For the first time, accurate values of the molecular parameters of this torsionally doubled, vibrational band were obtained. A total of 708 assigned transitions have been analyzed to yield a set of 14 rovibrational constants for the lower torsion-vibration level (SD = 0.00487 cm−1) and 13 rovibrational constants for the upper torsion-vibration level (SD = 0.00382 cm−1). These hybrid bands are primarily A type with band centers at 1264.5812 ± 0.0009 and 1273.6830 ± 0.0009 cm−1. Because of the absence of observed perturbations, the derived molecular constants can be used to calculate transition frequencies with a high degree of accuracy up to Ka = 6.  相似文献   

18.
In this paper, the results of Hg1−xZnxTeCdTe strained layer superlattices grown by MBE are reported, and compared to Hg1−xCdxTeCdTe superlattices. Both Type III and Type I Hg1−xZnxTeCdTe superlattices with different strain have been grown on CdTe(111)B/GaAs(100) and CdTe(100)/GaAs(100) substrates and characterized by electron, X-ray diffraction, infrared transmission and Hall measurements. The values of hole mobility between 5×103 up to 2×104cm2v−1s−1 at T = 23K along (111)B growth orientation and up to 4.9×104cm2v−1s−1 at T = 5K along (100) growth orientation are obtained for Type III superlattices whereas in Type I superlattices, the hole mobility is between 200–300cm2v−1s−1. This drastic change in the hole mobility between Type III and Type I superlattices along with the role of the strain are discussed in this paper.  相似文献   

19.
Raman spectroscopy complemented with infrared spectroscopy has been used to study the rare‐earth‐based mineral decrespignyite [(Y,REE)4Cu(CO3)4Cl(OH)5· 2H2O] and the spectrum compared with the Raman spectra of a series of selected natural halogenated carbonates from different origins including bastnasite, parisite and northupite. The Raman spectrum of decrespignyite displays three bands at 1056, 1070 and 1088 cm−1 attributed to the CO32− symmetric stretching vibration. The observation of three symmetric stretching vibrations is very unusual. The position of the CO32− symmetric stretching vibration varies with the mineral composition. The Raman spectrum of decrespignyite shows bands at 1391, 1414, 1489 and 1547 cm−1, whereas the Raman spectra of bastnasite, parisite and northupite show a single band at 1433, 1420 and 1554 cm−1, respectively, assigned to the ν3 (CO3)2− antisymmetric stretching mode. The observation of additional Raman bands for the ν3 modes for some halogenated carbonates is significant in that it shows distortion of the carbonate anion in the mineral structure. Four Raman bands are observed at 791, 815, 837 and 849 cm−1, which are assigned to the (CO3)2−ν2 bending modes. Raman bands are observed for decrespignyite at 694, 718 and 746 cm−1 and are assigned to the (CO3)2−ν4 bending modes. Raman bands are observed for the carbonate ν4 in‐phase bending modes at 722 cm−1 for bastnasite, 736 and 684 cm−1 for parisite and 714 cm−1 for northupite. Multiple bands are observed in the OH stretching region for decrespignyite, bastnasite and parisite, indicating the presence of water and OH units in the mineral structure. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
The integrated infrared intensities of the fundamental modes of NH3 have been measured by the Wilson-Wells-Penner-Weber method. The intensities were found to be 43.9 ± 0.6, 567.6 ± 9.4 and 110.5 ± 2.0 atm-1 cm-2 (standard temperature and pressure) for the ν1 + ν3, ν2 and ν4 bands, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号