首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate the preparation of nearly monodisperse gold nanoparticles by heat treatment in different conditions. The effects of various solvents, heating temperature, and heating time length on the monodispersity of gold nanoparticles were studied systematically and a general route to generate gold nanoparticles with uniform size was determined. The first step was to prepare gold nanoparticles with less than 3 nm and the following operation was to heat the gold nanoparticles in the present of thiolated solvents where monodispersed gold nanoparticles could be obtained easily. Our approach has enriched synthesis of monodisperse gold nanoparticles, and may provide some valuable experimental data about how the heating process affects the size evolution of gold nanoparticles.  相似文献   

2.
A simple procedure using gold diffusion bonding for the preparation of template-stripped gold (TSG) surfaces is described. TSG surfaces are useful for surface studies because a very consistent flat gold surface with few defects can be easily prepared. We have developed a method of producing TSG surfaces that relies only on gold diffusion bonding rather than epoxies. The resulting substrates are free from concerns of solvent compatibility, heat stability, and impurities. Bonding of centimeter-sized substrates is performed at 300 degrees C for 2 h using a vise and aluminum foil.  相似文献   

3.
Isolated neutral gold clusters with 2?C20 atoms are studied theoretically using a parametrized density-functional tight-binding method combined with genetic algorithms. The structural and energetic properties are analyzed by studying the total energy per atom, the relative stability, the overall shape, and through a common-neighbor analysis. In addition, the temperature dependence of the vibrational heat capacities of the optimized gold clusters has been studied for the first time. We find the vibrational heat capacity of the clusters to be strongly size dependent at low temperature. For instance, the cluster with 6 atoms has a high vibrational heat capacity at low temperature, a finding rationalized in terms of structure.  相似文献   

4.
Principles and operation of the infrared gold image furnace are discussed and its advantages over conventional resistance furnaces for studies of advanced materials listed. Using the gold image furnace in combination with a standard microscope allows continuous monitoring of materials to very high temperatures. New approaches to measurement of heat capacity and thermal diffusivity/conductivity are also described.  相似文献   

5.
In order to obtain additional insight into the release mechanism of the metals in electrothermal atomization atomic absorption spectrometry, a quantitative relation between the heat of vaporization and the size of the released particles is proposed on the basis of the Kelvin equation. The applicability of the equation for the investigation of silver and gold vaporization is demonstrated and the limits in which the model is valid are determined.According to the present considerations the activation energy could be equal to the heat of vaporization of the silver and gold droplets. An explanation of the observed dependence of activation energy on analyte mass is given. The proposed relation provides a possibility for definition and evaluation of an “effective” radius/size of the droplets on the basis of their heat of vaporization. A correlation between the mass of the injected sample and the “effective” radius of the droplets, obtained at higher temperature is found. The minimum and maximum “effective” radii of the droplets, following the proposed equation are calculated for Ag on pyrolytic graphite coated electrographite (PGC) and Au on PGC, uncoated electrographite (EG) and glassy carbon (GC) tubes. The results obtained are indirect evidence for the island structure of precursor metal layer and for the existence of silver and gold microdroplets on the graphite support.  相似文献   

6.
Gold nanoparticles with an average diameter of approximately 20 nm were prepared in an aqueous solution by a wet chemistry method. The parent gold nanoparticles were then capped with a 4-aminothiophenol protecting layer and transferred into toluene by tuning the surface charge of the modified nanoparticles. Gold nanoparticles before and after phase transfer were subjected to photofragmentation by a pulsed 532 nm laser. The effects of solvent properties and surface chemistry on the photofragmentation of the gold nanoparticles have been investigated. Fast photofragmentation has been observed in the organic solvent in which the dielectric constant, heat capacity, and thermal conductivity are lower. The results suggest new approaches for the preparation of very small gold clusters from gold nanoparticles.  相似文献   

7.
The methods of heat capacity data determination from differential scanning calorimetry measurements are described. The negative effects increasing uncertainty of heat capacity determination are mentioned. Modified stepwise method was described and verified using molybdenum, copper, and gold standards. Modified stepwise method provides better accuracy of C p values compared to continuous and stepwise method.  相似文献   

8.
《Electroanalysis》2006,18(1):89-94
The fabrication and characterization of very cheap disposable gold disk electrodes with reproducible area is reported. The innovation of the proposed procedure is the use of toner masks to define reproducible areas on uniform gold surfaces obtained from recordable compact disks (CD‐R). Toner masks are drawn in a laser printer and heat transferred to gold surfaces, defining exactly the electrodes area. The electrochemical behavior of these disposable electrodes was investigated by cyclic voltammetry in Fe(CN)64? solutions. The relative standard deviation for signals obtained from 10 different gold electrodes was below 1 %. The size of the disk electrodes can be easily controlled, as attested by voltammetric responses recorded by using electrodes with radii varying from 0.5 to 3.0 mm. The advantages of using this kind of electrode for analytical measurements of substances that strongly adsorb on the electrode surface such as cysteine are also addressed.  相似文献   

9.
Nonlinear effects of pulsed and continuous laser radiation on mineral samples from technogenic placers in the Amur river region, containing submicron gold which cannot be extracted by modern gravity separation methods, were studied. The formation of self-organized gold structures on the surface of silicate matrix was detected, and general relations for the agglomeration and concentration of “nonrecoverable” gold species were found. The agglomeration process was simulated by a nonlinear heat conduction equation for onedimensional case including laser radiation parameters.  相似文献   

10.
Liu XY  Li CH  Che CM 《Organic letters》2006,8(13):2707-2710
[reaction: see text] Phosphine gold(I) complexes catalyzed isomerization of terminal alkenes and hydroamination of unactivated alkenes under thermal and microwave-assisted conditions. This is the first example of the use of microwave radiation as a heat source for gold(I)-catalyzed organic reactions.  相似文献   

11.
Controlled-release systems that respond to external stimuli have received great interest for use in medical treatments such as for drug delivery to specific sites. Gold nanorods have an absorption band at the near-infrared region and convert the absorbed light energy into heat, which is known as a "photothermal effect". Therefore, gold nanorods are expected to act not only as an on-demand thermal converter for photothermal therapy but also as a controller of a drug-release system capable of responding to the near-infrared light irradiation. In this study, to construct a controlled-release system that responds to near-infrared light irradiation, we modified gold nanorods with polyethylene glycol (PEG) through Diels-Alder cycloadducts. When the modified gold nanorods were irradiated by near-infrared light, the PEG chains were released from the gold nanorods because of the retro Diels-Alder reaction induced by the photothermal effect. As a result of the PEG release, the gold nanorods formed aggregates. This type of controlled-release system coupled with the aggregate formation of the gold nanorods triggered by near-infrared light could be expanded to applications of gold nanorods in medical fields such as drug and photothermal therapy.  相似文献   

12.
The electrochemical properties of gold, platinum and gold–platinum alloy electrodes under different heat treatment conditions have been studied in 0.5 M H2SO4 and 0.5 M NaOH. The electro-oxidation of 0.1 M ethylene glycol in 0.5 M NaOH at these electrodes has also been studied. It was found that all the gold–platinum electrodes are more active for ethylene glycol electro-oxidation than both pure gold and platinum, and that the gold–platinum electrodes in the solid solution condition are more active than the two-phase electrodes. Poisoning of all the electrodes occurs during electrolysis of ethylene glycol at a fixed potential. Potential pulsing is successful in removing the poisoning species formed at the pure gold and pure platinum electrodes. High apparent current densities are found during the first few cycles at the Au–Pt alloy electrodes. These high current densities are also associated with more severe poisoning – than at both pure gold and platinum – and longer cleaning cycles are needed to remove the poisons at these electrodes.  相似文献   

13.
This article reports the effects of heating temperature and composition of nanoparticle multilayer films on the morphology, stability, and optical property of gold nanoisland films prepared by nanoparticle self-assembly/heating method. First, nanoparticle-polymer multilayer films are prepared by the layer-by-layer assembly. Nanoparticle multilayer films are then heated at temperature ranging from 500 °C to 625 °C in air to induce an evaporation of organic matters from the films. During the heating process, the nanoparticles on the solid surface undergo coalescence, resulting in the formation of nanostructured gold island arrays. Characterization of nanoisland films using atomic force microscopy and UV-vis spectroscopy suggests that the morphology and stability of gold island films change when different heating temperatures are applied. Stable gold nanoisland thin film arrays can only be obtained after heat treatments at or above 575 °C. In addition, the results show that the use of nanoparticles with different sizes produces nanoisland films with different morphologies. Multilayer films containing smaller gold nanoparticles tend to produce more monodisperse and smaller island nanostructures. Other variables such as capping ligands around nanoparticles and molecular weight of polymer linkers are found to have only minimal effects on the structure of island films. The adsorption of streptavidin on the biotin-functionalized nanoisland films is studied for examining the biosensing capability of nanoisland arrays.  相似文献   

14.
Several copper-gold alloys, with compositions of between 10 and 80 atomic percent of gold, were examined by quantitative DTA from 25 to 500°C. The results are in good agreement with those obtained by other less rapid, but more accurate, methods. All the reactions observed were first-order transformations. A latent heat (180 ± 40 cal g-at?1) was measured at 405°C for the α″I → α″II transformation of the alloy containing 50% of gold. An endothermic effect, corresponding to an order—disorder reaction, was detected for all alloys, up to a composition of over 90 atomic percent of gold.  相似文献   

15.
The spectral evolution of the surface-enhanced Raman scattering (SERS) of 4-tert-butylbenzylmer-captan(4-tBBM)on gold nanopanlcles assembly under laser irradiation is reported.The reIative intensities of typical peaks in the spectrum of 4-tBBM gradually change with irradiation time.Comparison of the rate of spectral changes under several experimental conditions indicates that the surface plasmon resonance(SPR)induced heat in the gold nanoparticles assembly is the origin of the spectraI evolution.During the process of self-assembly,4-tBBM molecules do not form a compact ordered monolayer because of the spatial hindrance of the 4-tert-butyl end group.The heat induced by laser irradiation drives the 4-tBBM molecules to rearrange to a more stable orientation.  相似文献   

16.
The spectral evolution of the surface-enhanced Raman scattering (SERS) of 4-tert-butylbenzylmer-captan (4-tBBM) on gold nanoparticles assembly under laser irradiation is reported. The relative intensities of typical peaks in the spectrum of 4-tBBM gradually change with irradiation time. Comparison of the rate of spectral changes under several experimental conditions indicates that the surface plasmon resonance (SPR) induced heat in the gold nanoparticles assembly is the origin of the spectral evolution. During the process of self-assembly, 4-tBBM molecules do not form a compact ordered monolayer because of the spatial hindrance of the 4-tert-butyl end group. The heat induced by laser irradiation drives the 4-tBBM molecules to rearrange to a more stable orientation.  相似文献   

17.
Ionic liquid-based stable nanofluids containing gold nanoparticles   总被引:1,自引:0,他引:1  
A one-phase and/or two-phase method were used to prepare the stable ionic liquid-based nanofluids containing same volume fraction but different sizes or surface states of gold nanoparticles (Au NPs) and their thermal conductivities were investigated in more detail. Five significant experiment parameters, i.e. temperature, dispersion condition, particle size and surface state, and viscosity of base liquid, were evaluated to supply experimental explanations for heat transport mechanisms. The conspicuously temperature-dependent and greatly enhanced thermal conductivity under high temperatures verify that Brownian motion should be one key effect factor in the heat transport processes of ionic liquid-based gold nanofluids. While the positive influences of proper aggregation and the optimized particle size on their thermal conductivity enhancements under some specific conditions demonstrate that clustering may be another critical effect factor in heat transport processes. Moreover, the remarkable difference of the thermal conductivity enhancements of the nanofluids containing Au NPs with different surface states could be attributed to the surface state which has a strong correlation with not only Brownian motion but also clustering. Whilst the close relationship between their thermal conductivity enhancements and the viscosity of base liquid further indicate Brownian motion must occupy the leading position among various influencing factors. Finally, a promisingly synergistic effect of Brownian motion and clustering based on experimental clues and theoretical analyses was first proposed, justifying different mechanisms are sure related. The results may shed lights on comprehensive understanding of heat transport mechanisms in nanofluids.  相似文献   

18.
分别采用N-十六烷基-N-(羟乙基)-N,N-二甲基溴化铵(CHDAB)和丁烷-1,4-二(N-十六烷基-N,N-二甲基溴化铵)(G16-4-16)2种阳离子表面活性剂作为金属表面修饰剂, 在石油醚/正丁醇/水混合体系中用KBH4 还原HAuCl4制备出亲油性纳米金. 其中, 双子表面活性剂G16-4-16显示出更好的包裹分散作用, 其包裹的纳米金粒径分布范围较窄, 平均粒径为5.2 nm. 将该纳米金颗粒分散在液态烷烃、 甲苯和长链烷基醇等溶剂中可制成稳定的油基纳米流体. 采用紫外-可见光谱法跟踪热稳定性随时间的变化, 结果表明, 该纳米流体显示了较好的热稳定性, 在130 ℃稳定时间达20 h. 采用点热源法测定了该纳米流体的导热系数, 结果表明, 50 ℃时添加质量分数1.5%的纳米金可以使其导热系数增大约17%.  相似文献   

19.
Gold nanoparticle films are assembled on glass and quartz substrates by a simple and highly efficient layer-by-layer deposition procedure that uses only commercially available cationic polymers. The film samples are then modified by heat curing in the temperature range of 25–1100 °C. The changes in the film conductance and colour with the curing temperature are related to the respective changes in micro-morphology of films on quartz as observed by scanning electron microscopy. In addition, we have demonstrated that the heat curing can embed the gold nanoparticle layer in the glass substrates. Because of the preparation simplicity and peculiar properties of these films, they could be used in various practical applications.  相似文献   

20.
A process is described to speedily produce in the laboratory, single or multiple coplanar gold electrodes of any shape and with sizes ranging from 100 μm to 10 cm, as well as to assemble microfluidic flow cells with them. The innovative combination of simple processes for ad hoc design and production uses readily available equipment and inexpensive materials, like recordable compact disks of the gold sputtered type. The following steps are involved: drawing of the electrode(s) on a microcomputer; laser printing of the design on wax paper; heat-transfer of the toner onto the gold surface of a peeled CD-R; etching of the gold layer from unprinted regions; removal of the toner with a solvent; activation; and use in conventional batch or flow cells. To obtain microfluidic flow cells with 7–12 μm interlayer gap, a gasket spacer of the desired shape is drawn and laser printed, the toner layer is heat transferred onto one CD piece with pre-etched electrodes and a second CD section is heat-sealed on top of it. The functionality of these electrodes as well as of the microfluidic flow cells is demonstrated by voltammetry and flow injection amperometric analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号