首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ionic organic crystals containing organic planar π-conjugated units has become one of the hot spots as nonlinear optical (NLO) materials. However, although this type of ionic organic NLO crystals commonly have remarkable second harmonic generation (SHG) responses, they also suffer from overlarge birefringences and relatively small band gaps that be hardly beyond 6.2 eV. Herein, a flexible π-conjugated [C3H(CH3)O4]2− unit was theoretically revealed, showing great potential for designing NLO crystals with balanced optical properties. Accordingly, through the reasonable NLO-favourable layered design, a new ionic organic material, NH4[LiC3H(CH3)O4], was successfully obtained. As expected, it achieves not only a large SHG effect (4×KDP), but also a suitable birefringence (0.06@546 nm) and an ultrawide band gap (>6.5 eV). This study provides a new flexible π-conjugated NLO-active unit, contributing to design more ionic organic NLO materials with excellent balanced optical properties.  相似文献   

2.
Nonlinear optical (NLO) crystal, which simultaneously exhibits strong second-harmonic-generation (SHG) response and desired optical anisotropy, is a core optical material accessible to the modern optoelectronics. Accompanied by strong SHG effect in a NLO crystal, a contradictory problem of overlarge birefringence is ignored, leading to low frequency doubling efficiency and poor beam quality. Herein, a series of rare earth cyanurates RE5(C3N3O3)(OH)12 (RE=Y, Yb, Lu) were successfully characterized by 3D electron diffraction technique. Based on a “three birds with one stone” strategy, they enable the simultaneous fulfillment of strong SHG responses (2.5–4.2× KH2PO4), short UV cutoff (ca. 220 nm) and applicable birefringence (ca. 0.15 at 800 nm) by the introduction of rare earth coordination control of π-conjugated (C3N3O3)3− anions. These findings provide high-performance short-wavelength NLO materials and highlight the exploration of cyanurates as a new research area.  相似文献   

3.
Common nonlinear optical (NLO) crystals consist of traditional functional building blocks with inherent optical limitation. Herein, inspired by traditional (B3O6)3− inorganic building block, we theoretically identified a new type of organic functional building blocks and then successfully synthesized the first cyamelurate NLO crystal, Ba(H2C6N7O3)2 ⋅ 8 H2O. To our surprise, the constituent (H2C6N7O3) building block is not in structurally optimal arrangement, but Ba(H2C6N7O3)2 ⋅ 8 H2O exhibits excellent optical properties including wide band gap of 4.10 eV, very large birefringence of 0.24@550 nm, and exceptionally strong second-harmonic generation (SHG) response of about 12×KH2PO4. Both the SHG response and birefringence are much larger than those of commercial NLO crystal β-BaB2O4 with optimally aligned (B3O6)3− building block. Theoretical calculations suggest that the expanded π-conjugation delocalization within (H2C6N7O3) vs (B3O6)3− should be responsible to the enhanced performance. This work implies that there is still much room to develop new NLO crystals with excellent functional building blocks that may be longly neglected.  相似文献   

4.
Nonlinear optical (NLO) crystal, which simultaneously exhibits strong second-harmonic-generation (SHG) response and desired optical anisotropy, is a core optical material accessible to the modern optoelectronics. Accompanied by strong SHG effect in a NLO crystal, a contradictory problem of overlarge birefringence is ignored, leading to low frequency doubling efficiency and poor beam quality. Herein, a series of rare earth cyanurates RE5(C3N3O3)(OH)12 (RE=Y, Yb, Lu) were successfully characterized by 3D electron diffraction technique. Based on a “three birds with one stone” strategy, they enable the simultaneous fulfillment of strong SHG responses (2.5–4.2× KH2PO4), short UV cutoff (ca. 220 nm) and applicable birefringence (ca. 0.15 at 800 nm) by the introduction of rare earth coordination control of π-conjugated (C3N3O3)3− anions. These findings provide high-performance short-wavelength NLO materials and highlight the exploration of cyanurates as a new research area.  相似文献   

5.
The stereochemical activity of lone pairs (SCALP) in a cation favors the formation of acentric materials and can enhance the second-harmonic-generation (SHG) response and/or the birefringence. By introducing functional SbIII into sulfates, an anhydrous sulfate of Sb6O7(SO4)2 ( 1 ) is explored. Sb3+ cations are in seesaw configurations and in-phase aligned in a 3D asymmetric dense structure. Compound 1 exhibits an enhanced phase-matching SHG response, a moderate birefringence, a wide transparency window, and considerable environmental stabilities, which result in it being a promising UV nonlinear optical (NLO) material. Theoretical studies reveal that the stereoactive lone pairs on Sb3+ cations make the predominant contribution to the SHG effect. This work will attract more interest from scientists for research into SCALP-cation-based NLO materials.  相似文献   

6.
Nonlinear optical (NLO) crystals assembled with conventional non-π-conjugated tetrahedral functional building units (FBUs), generally referring to [PO4] and [BO4], usually exhibit weak nonlinearity and poor birefringence. It is currently proposed that partially substituting oxygen atoms with fluoride atoms in these FBUs could enhance these crucial properties. Hence, we investigated for the first time the NLO-related properties of NH4BAsO4F (ABAF), which was constructed from tetrahedral [BO3F] and [AsO4] FBUs, and enhancements of these properties were observed in this material, that is large second-harmonic generation (SHG) response (2 × KDP) and improved birefringence (0.03 at 1064 nm). Notably, both SHG coefficient and birefringence of ABAF exceeded those of a great majority of phosphates, sulfates, or boron phosphates and achieved a preferable balance. It is interesting that ABAF shows vast structural similarities to the typical NLO crystals Sr2Be2B2O7 (SBBO) and KBe2BO3F2 (KBBF), which might be the partial reason why it showed improvement in these vital properties. This work may afford some inspiration for enhancing the key performances of NLO crystals assembled with non-π-conjugated tetrahedra.

We report a new nonlinear optical crystal assembled exclusively with tetrahedral functional building units in which enhanced birefringence (Δn) and second-harmonic generation (deff) were observed.  相似文献   

7.
The nonlinear optical (NLO) crystals that can expand the wavelength of the laser to the deep-ultraviolet (DUV) region by the cascaded second harmonic generation (SHG) are of current research interest. It is well known that borates are the most ideal material class for the design of new DUV NLO crystals owing to the presence of good NLO genes, e.g., BO3 or B3O6 groups. However, the NLO pyro-borates with the B2O5 dimers as the sole basic building units are still rarely reported owing to their small SHG responses. In this communication, by constructing a planar pentagonal [Ca(B2O5)] layer, the NLO pyro-borate Ba4Ca(B2O5)2F2 with a large SHG response (∼2.2 × KDP, or ∼7 × α-Li4B2O5) and a DUV transparent window has been designed and synthesized. The first-principles calculations show that the large SHG response of Ba4Ca(B2O5)2F2 mainly originates from the better π-conjugation of the coplanar B2O5 dimers in the [Ca(B2O5)] layer. In addition, the planar pentagonal pattern in the [Ca(B2O5)] layer provides an ideal template for designing the new DUV NLO crystals, apart from those in known DUV borates, e.g., the [Be2BO3F2] layer in KBe2BO3F2 (KBBF).

A new deep-UV NLO pyro-borate Ba4Ca(B2O5)2F2 was synthesized by solid-state reactions. The better π-conjugation of B2O5 dimers in the planar pentagonal layer achieves a large SHG response (∼2.2 × KDP), which is the largest among all the known DUV transparent borates with B2O5 units.

Deep-ultraviolet (DUV, λ < 200 nm) coherent lights with high photon energy, high spatial resolution, and a small heat-affected zone are of significance for applications in photolithography, high-resolution spectroscopy, laser cooling, and scientific equipment.1–4 However, it is difficult or well-nigh impossible for solid-state lasers to directly radiate the DUV coherent lights. In contrast, relying on the process of second harmonic generation (SHG) of nonlinear optical (NLO) crystals is a more effective way to generate the DUV coherent lights and causes much attention.5,6 Therefore, the NLO crystal has become an important material basis of solid-state lasers, which seriously affects the development of all-solid-state laser technology. However, it is still a great challenge to rationally design and synthesize DUV NLO crystals because of the extremely rigorous requirements of structural symmetry and properties.7–10 Structurally, the DUV NLO crystals must crystallize in the noncentrosymmetric (NCS) space groups which are the prerequisite for the materials to exhibit SHG responses. Moreover, it should possess a broad transparency window, a largely effective NLO coefficient (deff ≥ 0.39 pm V−1), and a moderate birefringence (0.05–0.10@1064 nm) to achieve the phase-matching (PM) conditions in the DUV region.10 Based on these requirements, borates have been considered as the ideal material class for DUV NLO crystals because of their special structure and properties'' virtues, including the rich acentric structural types, large band gaps, and stable physical and chemical properties.8 To date, the commercialized borate-based UV NLO crystals consist of β-BaB2O4 (BBO), LiB3O5 (LBO), CsLiB6O10 (CLBO),9,10 and the practical DUV NLO crystal KBe2BO3F2 (KBBF). Especially for KBBF, it has become the sole material that can generate DUV coherent laser light (177.3 nm) by a direct SHG method.7 Other excellent borate-based UV NLO crystals also consist of K3B6O10Cl,11 SrB5O7F3,12 Li2B6O9F2,5 CsAlB3O6F,13 M2B10O14F6 (M = Ca, Sr),14 NH4B4O6F,15 NaSr3Be3B3O9F4,16 AB4O6F (A = K, Rb, and Cs),17etc.The above borate-based materials have achieved great success as UV and DUV NLO crystals, which are mainly attributed to the ability of boron atoms to coordinate with three or four oxygen anions forming trigonal-planar or tetrahedral building blocks.18,19 For example, the first borate-based NLO crystal, KB5O8·4H2O (KB5), has the basic building units (BBUs) of [B5O10], while the BBUs of β-BBO, LBO, and KBBF are [B3O6], [B3O7], and isolated [BO3], respectively.7,8 Remarkably, although various borate crystals with different types of borate groups have been explored during the past decades, the pyro-borate NLO crystals with B2O5 groups as the sole BBUs are rarely reported owing to their weak SHG responses.20–23 For example, the SHG response of the DUV transparent α-Li4B2O5 (ref. 23) is only ∼0.3 × KDP, which is far smaller than the expected value (0.39 pm V−1, 1 × KDP).Actually, the flexible B2O5 groups which are composed of two π-conjugated BO3 units through corner-sharing may also be capable of generating excellent optical performance if they have benign arrangements. In recent research, Pan''s group has indicated that the B2O5 dimers are perfect for the design of DUV birefringent crystals. By the synergistic combination, they have successfully designed a potential pyro-borate birefringent crystal, Li2Na2B2O5, with a short UV cut-off edge (181 nm) and large birefringence (0.095@532 nm).21 And they have also grown Ca(BO2)2 crystals exhibiting a short UV cut-off edge and larger birefringence (169 nm; 0.2471@193 nm). Based on the analysis of the structure–property relationship of Ca(BO2)2, they stated that the polymerized planar BnO2n+1 groups, e.g., B2O5, could generate a larger anisotropy than isolated BO3.22 However, their opposite arrangements of B–O groups make them crystallize in the centrosymmetric (CS) space groups, which limit their further development as NLO compounds. Thus, it is clear that pyro-borates exhibiting a large birefringence and a short UV cut-off edge would also be promising DUV NLO crystals if their SHG responses can be enhanced.Based on the above-mentioned ideas, a systematical investigation has been performed on DUV pyroborates. And finally, we successfully synthesized a new NCS pyro-borate, Ba4Ca(B2O5)2F2, which can exhibit not only a large SHG response (∼2.2 × KDP and ∼7 × α-Li4B2O5) but also a short UV cut-off edge (<190 nm). Analyzing its structure, one can find that its excellent NLO properties mainly originate from the unique planar pentagonal [Ca(B2O5)] layer, where the B2O5 groups adopt the almost coplanar configurations that favor the structure to generate large SHG response and birefringence,21 meanwhile the terminal O atoms of B2O5 groups are also linked by the Ca2+ cations, which eliminate the dangling bonds of B2O5 groups and further blue-shift the UV cut-off edge. More importantly, the adjacent [Ca(B2O5)] layers in Ba4Ca(B2O5)2F2 are linked by other B2O5 groups to form a 3D framework, which will be favorable for the material to avoid the layer habit that KBBF suffers from. In this sense, the planar pentagonal [Ca(B2O5)] layer is similar to the [Be2BO3F2] layer in KBBF, and it can be seen as a new structure template for the design of new DUV NLO crystals, especially for the DUV pyro-borates. Herein, we will describe the synthesis, experimental and computational characterization as well as the functional properties of the new DUV NLO material, Ba4Ca(B2O5)2F2.A polycrystalline sample of Ba4Ca(B2O5)2F2 was synthesized by the conventional solid-state reaction and the purity was confirmed by powder X-ray diffraction (XRD) (Fig. S1). With the polycrystalline sample, the thermal behavior of Ba4Ca(B2O5)2F2 was studied by the thermogravimetric (TG) and differential scanning calorimetry (DSC) measurements. The heating DSC curve shows a sharp endothermic peak at 815 °C with no obvious weight loss in the TG curve (Fig. S2), suggesting that Ba4Ca(B2O5)2F2 has good thermal stability. To further investigate the thermal behavior of Ba4Ca(B2O5)2F2, the polycrystalline sample was calcined at 840 °C and the XRD analysis showed that the calcined sample was Ba4Ca(B2O5)2F2, Ba2Ca(BO3)2 (PDF #01-085-2268), Ba2CaB6O12 (PDF #01-075-1401) and other unknown phases (Fig. S3). These results illustrate that Ba4Ca(B2O5)2F2 melts incongruently and the suitable flux is necessary for the crystal growth.With the Na2O–PbF2–B2O3 as the flux, millimeter-sized block crystals of Ba4Ca(B2O5)2F2 were grown for the single-crystal XRD structure determination. Ba4Ca(B2O5)2F2 crystallizes in the NCS and polar space group, P21 (Table S1). In the asymmetric unit, there are four unique Ba, one Ca, four B, ten O, and two F atom(s), which all fully occupy the 2a Wyckoff positions (Table S2). All B atoms are coordinated to three oxygen atoms to form the BO3 triangles with the B–O distances ranging from 1.312(17) to 1.460(16) Å and O–B–O angles varying from 108.0(13) to 130.2(15)°. The BO3 triangles are further connected to form two types of B2O5 dimers, i.e. plane B(1,3)2O5 and twisted B(2,4)2O5, which are the BBUs of Ba4Ca(B2O5)2F2. The Ca atoms are coordinated to six oxygen atoms to form CaO6 octahedra with the Ca–O distances ranging from 2.285(9) to 2.325(13) Å. For the Ba2+ cations, they exhibit three different coordination environments, Ba(1,2)O6F2, Ba(3)O8F2, and Ba(4)O7F2 (Fig. S4) with the Ba–O distances ranging from 2.585(9) to 3.250(11) Å and the Ba–F bond lengths ranging from 2.635(8) to 2.736(8) Å. Remarkably, for the F anions, each unique fluorine atom serves as a common vertex for four Ba atoms to form the FBa4 polyhedra (Fig. S5a), which could be treated as fluorine-centered secondary building units (SBUs). The Ba–F–Ba angles vary from 99.0 (2) to 120.2 (3)°. The bond valence sum (BVS) calculations show the values of 1.67–1.97, 2.45, 2.88–3.10, 1.78–2.13, and 0.95–1.09, for Ba2+, Ca2+ B3+, O2−, and F, respectively (Table S2). The BVSs of atoms are consistent with their expected oxidation states except the one from the Ca2+ cations. The larger BVSs of Ca2+ cations can be attributed to six shorter Ca–O bond lengths, which are also observed in other Ca2+-containing borates, such as YCa3(VO)3(BO3)4 (2.44),24 Rb2Ca3B16O28 (2.29), and Cs2Ca3B16O28 (2.30).25The structure of Ba4Ca(B2O5)2F2 is shown in Fig. 1. In the structure, the plane B(1,3)2O5 dimer is first connected with four CaO6 octahedra, meanwhile, each CaO6 octahedron is also linked by four B(1,3)2O5 dimers through sharing their four equatorial O atoms to form a unique planar pentagonal [Ca(B2O5)] layer in the bc plane (Fig. 1a, b). Then, these [Ca(B2O5)] layers are further linked by the twisted B(2,4)2O5 dimers to construct a 3D framework with Ba2+ cations maintaining the charge balance (Fig. 1c). Remarkably, for the arrangements of the Ba2+ cations and the F anions, the fluorine-centered SBU FBa4 polyhedra are linked to construct the 2D [F2Ba4] infinite layer (Fig. S5b) with the same orientation, which further fills the apertures in the [Ca(B2O5)2] framework (Fig. S5c). The existence of fluorine-centered SBUs would certainly have a strong influence on the local coordinate environments, and finally on the whole structure.26Open in a separate windowFig. 1(a) The [Ca(B2O5)] layer is composed of B2O5 dimers and CaO6 octahedra. (b) The planar pentagonal topology layer. The comparison of structures between (c) Ba4Ca(B2O5)2F2 and (d) KBBF.It is very interesting that Ba4Ca(B2O5)2F2 contains a planar pentagonal [Ca(B2O5)] layer, which is similar to the [Be2BO3F2] layer in KBBF. The structural evolution from KBBF to Ba4Ca(B2O5)2F2 is also shown in Fig. 1c and d. In KBBF, the BBUs are the planar BO3 triangles, which are connected with BeO3F in the ab plane by strong covalent bonds to form the [Be2BO3F2] layers (Fig. S6c) and the [Be2BO3F2] layers have achieved excellent NLO properties of the KBBF crystal.7 However in Ba4Ca(B2O5)2F2, the BO3 triangles are changed into the B2O5 dimers, and the BeO3F tetrahedra are substituted by the CaO6 polyhedra. These B2O5 dimers are also connected by the CaO6 polyhedra to form the interesting planar pentagonal [Ca(B2O5)] layer (Fig. S6d). More importantly, in KBBF, the adjacent [Be2BO3F2] layers are connected by the weak K+-F ionic bonds that results in the strong layer habit of the KBBF crystals, whereas in Ba4Ca(B2O5)2F2, the [Ca(B2O5)] layers are bridged by the strong covalent B–O bonds to form a stable 3D framework, which will greatly overcome the layering tendency of the KBBF crystal and facilitate the crystal growth.In addition, we also notice that the planar pentagonal [Ca(B2O5)] layer maybe helpful for enhancing the SHG responses of pyro-borates because small SHG responses of pyro-borates are attributed to the typical twisted configurations of the B2O5 groups, which are unfavorable for forming the π-conjugation and the superposition of the microscopic SHG response. For example, α-Li4B2O5, a DUV transparent pyro-borate with sole B2O5 units as the BBUs, has a weak SHG response, which may be derived from the twisted B2O5 groups and non-planar arrangements (Fig. S7a). However, in Ba4Ca(B2O5)2F2, the planar configuration of the pentagonal layers can assist the B2O5 groups to adopt a nearly coplanar arrangement (Fig. S7b) and effectively enhance the π-conjugation of B2O5 groups. The better π-conjugation of the planar B2O5 groups in the planar pentagonal [Ca(B2O5)] layer has also been confirmed by the electron orbital calculation based on the first-principles calculations.27 The calculated result is shown in Fig. 2. Clearly, the prominent conjugated interactions are observed in the nearly coplanar B(1,3)2O5 dimers of Ba4Ca(B2O5)2F2 (Fig. 2a), whereas it does little in the twisted B(2,4)2O5 dimers of Ba4Ca(B2O5)2F2 (Fig. 2b) and two types of twisted B2O5 dimers in α-Li4B2O5 (Fig. 2c and d). It can be expected that the nearly coplanar B2O5 dimers are more conducive to the large SHG response than the twisted B2O5 dimers. Remarkably, the similar pentagonal layers are also observed in other pyro-phosphates, such as Ba2NaClP2O7, K2Sb(P2O7)F, Rb3PbBi(P2O7)2, and Rb3BaBi(P2O7)2. Clearly, as pyro-phosphates are the non-π-conjugated systems, the planar pentagonal layers are only helpful for the orientation of anion groups.28–31 However, they cannot form the better π-conjugation. Therefore, the better π-conjugation of the nearly coplanar B2O5 groups in planar pentagonal layers of pyro-borate Ba4Ca(B2O5)2F2 would have a different contributing mechanism to the SHG effect with other non-π-conjugated pyro-phosphates.Open in a separate windowFig. 2The orbitals of the nearly coplanar B(1,3)2O5 (a) and twisted B(2,4)2O5 dimers (b) in Ba4Ca(B2O5)2F2. The orbitals of two twisted B2O5 dimers (c and d) in α-Li4B2O5.The presence of BO3 triangles in Ba4Ca(B2O5)2F2 is confirmed by the IR spectral measurements (Fig. S8). The peaks at 1362 cm−1 and 1208 cm−1 can be attributed to the asymmetric stretching of BO3 groups.32 A strong band at 1069 cm−1 in the IR spectrum may be associated with the stretching vibration of B–O–B in B2O5.33,34 The weak absorption bands at 950, and 810 cm−1 correspond to the symmetrical stretching vibrations of BO3 and B–O–B in B2O5, respectively. The peaks at 751 and 615 cm−1 can be attributed to the out-of-plane bending of the BO3 groups.34 Further, the UV-vis-NIR diffuse reflectance spectrum was also measured (Fig. S9), which shows that Ba4Ca(B2O5)2F2 is transparent down to the DUV region with a UV cut-off edge less than 190 nm (corresponding to a large band gap of 6.2 eV), which is comparable to the newly developed NLO-active borates, such as RbB3O4F2 (<190 nm), CsZn2BO3X2 (X2 = F2,Cl2, and FCl)) (<190 nm) and so on.35–38 The short cut-off edge demonstrates the potential application of Ba4Ca(B2O5)2F2 as a DUV NLO crystal.As Ba4Ca(B2O5)2F2 crystalizes in the NCS space group P21, it possesses the SHG response, which was measured by the Kurtz-Perry method with the well-known NLO material KH2PO4 (KDP) as a reference.39 As shown in Fig. 3, the SHG intensities of Ba4Ca(B2O5)2F2 increase with the increase of particle sizes, indicating that Ba4Ca(B2O5)2F2 is type-I phase-matchable. The SHG intensity of Ba4Ca(B2O5)2F2 at the particle size of 150–212 μm is about 2.2 times that of KDP, and is larger than that of KBBF (1.2 × KDP) or comparable with those newly reported UV NLO crystals, i.e. γ-Be2BO3F (2.3 × KDP),6 β-Rb2Al2B2O7 (2 × KDP),40 Li4Sr(BO3)2 (2 × KDP),41 CsB4O6F(∼1.9 × KDP).2 In addition, as we know, the SHG response of Ba4Ca(B2O5)2F2 is the largest among all the known DUV transparent borates with B2O5 units (Table S4). Its SHG response (2.2 × KDP) is about seven times larger than that of α-Li4B2O5 (0.3 × KDP), another DUV transparent pyro-borate with sole B2O5 units.Open in a separate windowFig. 3(a) Phase-matching curve, i.e., particle size vs. SHG intensity, data for Ba4Ca(B2O5)2F2 and KH2PO4 (KDP) as reference. The solid curve is a guide for the eye, not a fit to the data. (b) Oscilloscope traces showing SHG intensities for Ba4Ca(B2O5)2F2 and KDP.To understand the origin of the excellent optical properties of Ba4Ca(B2O5)2F2, we also carried out the first-principles calculations.27 It shows that Ba4Ca(B2O5)2F2 has an indirect band gap of 6.34 eV (Figures S10a), which is in accordance with the experimental results. The valence band maximum (VBM) of Ba4Ca(B2O5)2F2 is mainly composed of the orbitals in Ba, and O atoms, while the conduction band minimum (CBM) is dominantly composed of the orbitals in Ba, B, and O atoms. Therefore, the band gap of Ba4Ca(B2O5)2F2 is mainly determined by Ba atoms and B2O5 groups. Based on the calculated electron structure, the NLO coefficients of Ba4Ca(B2O5)2F2 are also calculated. The largest NLO coefficient of Ba4Ca(B2O5)2F2 is d22 = −0.524 pm V−1, which is about 5 times lower than that of α-Li4B2O5 (d24 = −0.102 pm V−1) (Table S5a), which is matched with the experimental one. Further, the SHG-weighted density maps of Ba4Ca(B2O5)2F2 are shown in Fig. 4. These reveal that B2O5 dimers make the dominant contribution (72.7%) to the total SHG effect (Table S5b). The band-resolved SHG analysis can also conclude that B–O orbitals in Ba4Ca(B2O5)2F2 contribute more to the SHG response than those in α-Li4B2O5 (Fig. S10b, S10c), indicating that the arrangements of B2O5 dimers in Ba4Ca(B2O5)2F2 is more beneficial for the large SHG response. And different from α-Li4B2O5, F-centered secondary building units (SBUs) exist in the structure of Ba4Ca(B2O5)2F2, and they are further linked to construct 2D [F2Ba4] infinite layers, which could help B2O5 groups arrange in a planar pattern (Fig. S5).26 So, based on the above analysis, we can conclude that the nearly coplanar B2O5 dimers in the planar pentagonal layer and the SBU FBa4 tetrahedra make a significant contribution to the SHG response of Ba4Ca(B2O5)2F2.Open in a separate windowFig. 4The SHG-weighted density maps of the virtual electron process (a) and virtual hole process (b) of d22 for Ba4Ca(B2O5)2F2.  相似文献   

8.
The combination of d0 transition metal oxofluorides with iodate anions helps to synthesize polar crystals. Herein, a novel polar crystal, K3V2O3F4(IO3)3, which is the first metal vanadium iodate with two types of V5+-centered polyhedra (VO4F2 octahedron and VO3F2 trigonal bipyramid), has been prepared hydrothermally. It crystallizes in the polar space group of Cmc21 and its structure displays an unprecedented 0D [V2O3F4(IO3)3]3− anion, which is composed of Λ-shaped cis-[VO2F2(IO3)2]3− and [VO2F2(IO3)]2− anions interconnected via the corner-sharing of one oxo anion. The synergy gained from the VO4F2, VO3F2 and IO3 groups resulted in K3V2O3F4(IO3)3 exhibiting both a strong second-harmonic generation (SHG) response (1.3 × KTiOPO4) under 2050 nm laser irradiation and a large birefringence (0.158 @ 2050 nm). This study provides a facile route for designing SHG materials by assembling various vanadium oxide-fluoride motifs and iodate anions into one compound.

K3V2O3F4(IO3)3, which is the first metal vanadium iodate containing two different V-centered polyhedra, exhibits a strong SHG effect of 1.3 × KTP and a large birefringence of 0.158 @ 2050 nm.  相似文献   

9.
The first fluorosulfonic ultraviolet (UV) nonlinear optical (NLO) material, C(NH2)3SO3F, is rationally designed by taking KBe2BO3F2 (KBBF) as the parent compound. C(NH2)3SO3F features similar topological layers as KBBF by replacing inorganic (BO3)3− with organic C(NH2)3+ trigonal units and BeO3F with SO3F tetrahedra. Therefore, C(NH2)3SO3F is a metal-free UV NLO crystal. Benefiting from the coplanar configuration of the C(NH2)3+ cationic groups, it possesses a large SHG response of 5×KDP and moderate birefringence of 0.133@1064 nm. Besides, it has a short UV cutoff edge of 200 nm. The calculated results reveal the shortest SHG phase-matching wavelengths can reach 200 nm. These findings highlight the exploration of metal-free compounds as nontoxic and low-cost UV NLO materials as a new research area.  相似文献   

10.
The first fluorosulfonic ultraviolet (UV) nonlinear optical (NLO) material, C(NH2)3SO3F, is rationally designed by taking KBe2BO3F2 (KBBF) as the parent compound. C(NH2)3SO3F features similar topological layers as KBBF by replacing inorganic (BO3)3? with organic C(NH2)3+ trigonal units and BeO3F with SO3F? tetrahedra. Therefore, C(NH2)3SO3F is a metal‐free UV NLO crystal. Benefiting from the coplanar configuration of the C(NH2)3+ cationic groups, it possesses a large SHG response of 5×KDP and moderate birefringence of 0.133@1064 nm. Besides, it has a short UV cutoff edge of 200 nm. The calculated results reveal the shortest SHG phase‐matching wavelengths can reach 200 nm. These findings highlight the exploration of metal‐free compounds as nontoxic and low‐cost UV NLO materials as a new research area.  相似文献   

11.
Oxychalcogenides with the performance-advantages of both chalcogenides and oxides are emerging materials class for infrared (IR) nonlinear optical (NLO) crystals that can expand the wavelength of solid-state lasers to IR regions and are of importance in industrial and civil applications. But rationally designing a high-performance oxychalcogenide NLO crystal remains a great challenge. Herein, we chose the melilite-type Sr2ZnSi2O7 as the structure template. Through part isovalent substitution of S2− for O2− anions, the first hetero-anionic thiostannate Sr2ZnSn2OS6 with wide IR transmission has been synthesized. More importantly, compared to the maternal oxide, Sr2ZnSi2O7, the second harmonic generation (SHG) response of Sr2ZnSn2OS6 is enhanced by two orders of magnitude. In addition, Sr2ZnSn2OS6 can exhibit a large band-gap and high laser damage threshold. These advantages make Sr2ZnSn2OS6 a promising IR NLO crystal. Our research will provide insights into the rational design of new IR NLO crystals.

Based on heteroanionic structure engineering, the first heteroanionic thiostannate has been successfully synthesized. It is a promising IR-NLO material exhibiting moderate second-harmonic generation and wide IR transmission.  相似文献   

12.
A novel nonlinear optical (NLO) material Bi2O2CO3 has been successfully developed by the hydrothermal method. It was characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectra, high resolution transmission electron microscopy (HRTEM), UV–vis–NIR diffuse reflectance spectrum (DRS) and photoluminescence (PL) spectra. The band gap was determined to be 3.42 eV, and the PL properties of Eu3+ doped Bi2O2CO3 under UV excitation have also been investigated. The powder second-harmonic generation (SHG) measurement performed on the ground crystal indicates that the NLO efficiency is approximately 5 times as large as that of KDP (KH2PO4) standard. In addition, the origin of large SHG for Bi2O2CO3 was also researched according to its crystal structure.  相似文献   

13.
A novel salt-inclusion fluoroiodate [GaF(H2O)][IO3F] derived from CsIO2F2 was ingeniously obtained through anisotropic polycation substitution. Because the catenulate [GaF(H2O)]2+ framework serves as a template for the favorable assembly of the polar [IO3F]2− groups and contributes to the nonlinear coefficient, [GaF(H2O)][IO3F] exhibits a greatly improved second-harmonic generation (SHG) effect of 10 times that of KH2PO4 (KDP) and a considerable band gap of 4.34 eV compared to the parent compound CsIO2F2 (3 × KDP, 4.5 eV). Particularly, to the best of our knowledge, [GaF(H2O)][IO3F] has the largest laser-induced damage threshold (LDT) of 140 × AgGgS2 of the reported iodates. All these results signify that [GaF(H2O)][IO3F] is a promising nonlinear optical (NLO) crystal. This work also proposes that anisotropic polycation substitution is an effective approach to optimize the SHG effect and develop excellent NLO materials.

A novel salt-inclusion fluoroiodate nonlinear optical material, [GaF(H2O)][IO3F], is derived from CsIO2F2 through polycation substitution, and it exhibits an intense SHG effect of 10 times that of KH2PO4 and improved overall performance.  相似文献   

14.
It is a great challenge to develop UV nonlinear optical (NLO) material due to the demanding conditions of strong second harmonic generation (SHG) intensity and wide band gap. The first ultraviolet NLO selenite material, Y3F(SeO3)4, has been obtained by control of the fluorine content in a centrosymmetric CaYF(SeO3)2. The two new compounds represent similar 3D structures composed of 3D yttrium open frameworks strengthened by selenite groups. CaYF(SeO3)2 has a large birefringence (0.138@532 nm and 0.127@1064 nm) and a wide optical band gap (5.06 eV). The non-centrosymmetric Y3F(SeO3)4 can exhibit strong SHG intensity (5.5×KDP@1064 nm), wide band gap (5.03 eV), short UV cut-off edge (204 nm) and high thermal stability (690 °C). So, Y3F(SeO3)4 is a new UV NLO material with excellent comprehensive properties. Our work shows that it is an effective method to develop new UV NLO selenite material by fluorination control of the centrosymmetric compounds.  相似文献   

15.
A novel nonlinear optical (NLO) material Na5Sc(CO3)4·2H2O has been synthesized under a subcritical hydrothermal condition. The structure is determined by single-crystal X-ray diffraction and further characterized by TG analyses and UV–vis–NIR diffuse reflectance spectrum. It crystallizes in the tetragonal space group P-421c, with a = b = 7.4622(6) Å, C = 11.5928(15) Å. The Second-harmonic generation (SHG) on polycrystalline samples was measured using the Kurtz and Perry technique, which indicated that Na5Sc(CO3)4·2H2O was a phase-matchable material, and its measured SHG coefficient was about 1.8 times as large as that of d36 (KDP). The results from the UV–vis diffuse reflectance spectroscopy study of the powder samples indicated that the short-wavelength absorption edges of Na5Sc(CO3)4·2H2O is about 220 nm, suggesting that this crystal is a promising UV nonlinear optical (NLO) materials.  相似文献   

16.
The design of efficient nonlinear optical (NLO) crystals continues to pose significant challenges due to the difficulty of assembling polar NLO-active modules in an optimal additive fashion. We report herein the first NLO-active mercuric nitrates A2Hg(NO3)4 (A=(KHNO), Rb (RHNO)), for which assembly is induced by ionic polarization of the d10 cations. The two new crystalline compounds are isostructural, featuring interesting pseudo-diamond-like structures with parallel [Hg(NO3)4] modules, and leading to strong powder second-harmonic generation (SHG) responses of 9.2 (KHNO) and 8.8 (RHNO) times that of KH2PO4. In combination with the simple solution preparation of centimeter-scale crystals, sufficient birefringence, and short ultraviolet (UV) cutoff edges, these attributes make KHNO and RHNO promising candidates for UV NLO materials. Theoretical calculations and single-crystal structure analysis reveal that the newly-developed highly condensed and distorted [Hg(NO3)4] module, with an Hg2+ cation that is quadruply bidentate nitrate-ligated, is crucial for the significant SHG responses. This work highlights the potential importance of modules with multiple bidentate ligands for the development of high-performing next-generation NLO materials.  相似文献   

17.
Two new pyrophosphates nonlinear optical (NLO) materials, Rb3PbBi(P2O7)2 ( I ) and Cs3PbBi(P2O7)2 ( II ), were successfully designed and synthesized. Both compounds exhibit large NLO effects and birefringences. Material I presents the scarce case of possessing the coexistence of large birefringence (0.031 at 1064 nm and 0.037 at 532 nm) and second harmonic generation (SHG) response (2.8× potassium dihydrogen phosphate (KDP)) in ultraviolet NLO phosphates and its SHG is the largest in the phase‐matching (PM) pyrophosphates. Both I and II have three‐dimensional (3D) crystal structures composed of corner‐shared RbO12 (CsO11), RbO10 (CsO10), BiO6, PbO7 (PbO6) and P2O7 groups, in which P2O7 and PbO7 (PbO6) units form an alveolate [PbPO] skeleton frame. Theoretical calculations reveal that the P?O, Bi?O and Pb?O units are mainly responsible for the moderate birefringence and large SHG efficiency of I .  相似文献   

18.
Two new pyrophosphates nonlinear optical (NLO) materials, Rb3PbBi(P2O7)2 ( I ) and Cs3PbBi(P2O7)2 ( II ), were successfully designed and synthesized. Both compounds exhibit large NLO effects and birefringences. Material I presents the scarce case of possessing the coexistence of large birefringence (0.031 at 1064 nm and 0.037 at 532 nm) and second harmonic generation (SHG) response (2.8× potassium dihydrogen phosphate (KDP)) in ultraviolet NLO phosphates and its SHG is the largest in the phase-matching (PM) pyrophosphates. Both I and II have three-dimensional (3D) crystal structures composed of corner-shared RbO12 (CsO11), RbO10 (CsO10), BiO6, PbO7 (PbO6) and P2O7 groups, in which P2O7 and PbO7 (PbO6) units form an alveolate [PbPO] skeleton frame. Theoretical calculations reveal that the P−O, Bi−O and Pb−O units are mainly responsible for the moderate birefringence and large SHG efficiency of I .  相似文献   

19.
The self-assembly of 2,6-diformyl-4-methylphenol (DFMP) and 1-amino-2-propanol (AP)/2-amino-1,3-propanediol (APD) in the presence of copper(II) ions results in the formation of six new supramolecular architectures containing two versatile double Schiff base ligands (H3L and H5L1) with one-, two-, or three-dimensional structures involving diverse nuclearities: tetranuclear [Cu4(HL2−)2(N3)4]·4CH3OH·56H2O (1) and [Cu4(L3−)2(OH)2(H2O)2] (2), dinuclear [Cu2(H3L12−)(N3)(H2O)(NO3)] (3), polynuclear {[Cu2(H3L12−)(H2O)(BF4)(N3)]·H2O}n (4), heptanuclear [Cu7(H3L12−)2(O)2(C6H5CO2)6]·6CH3OH·44H2O (5), and decanuclear [Cu10(H3L12−)4(O)2(OH)2(C6H5CO2)4] (C6H5CO2)2·20H2O (6). X-ray studies have revealed that the basic building block in 1, 3, and 4 is comprised of two copper centers bridged through one μ-phenolate oxygen atom from HL2− or H3L12−, and one μ-1,1-azido (N3) ion and in 2, 5, and 6 by μ-phenoxide oxygen of L3− or H3L12− and μ-O2− or μ3-O2− ions. H-bonding involving coordinated/uncoordinated hydroxy groups of the ligands generates fascinating supramolecular architectures with 1D-single chains (1 and 6), 2D-sheets (3), and 3D-structures (4). In 5, benzoate ions display four different coordination modes, which, in our opinion, is unprecedented and constitutes a new discovery. In 1, 3, and 5, Cu(II) ions in [Cu2] units are antiferromagnetically coupled, with J ranging from −177 to −278 cm−1.  相似文献   

20.
The development of new nonlinear optical (NLO) materials for deep‐ultraviolet (DUV) applications is in great demand. However, the synthesis of an ideal DUV NLO crystal is a serious challenge. Herein, three new alkali‐metal fluorooxoborates, AB4O6F (A=K, Rb, and Cs, and a mixed cation between two of them), were successfully synthesized by cation regulation. It is found that all reported compounds exhibit short UV absorption edges (<190 nm), and show second harmonic generation (SHG) responses ranging from 0.8 to 1.9 KH2PO4 (KDP). Interestingly, by judicious selection of the A‐site alkali‐metal cations, the arrangement of NLO‐active structural units is fine‐tuned to an optimal configuration, which contributes to large SHG responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号