首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The kinetics of the desorption of CO from a Pt(111) crystal between 419 and 505 K is reported using a Low-Energy Molecular-Beam-Scattering (LEMS) technique with a helium probe beam and a CO dosing beam. The resulting first-order Arrhenius rate constant is k = 2.7 × 1013exp(?31.1 kcalmole · RT) s?1. We also report a study of the equilibriumadsorbed CO between 400 and 600 K using LEMS. These results, fitted to a Temkin isotherm model, indicate that the adsorption energy decreases linearly with surface coverage with the average value equal to 31.1 + 1.2 kcalmole over the coverage range 0 < θ ? 0.5. The average harmonic oscillator frequency of the adsorbed CO molecules is 191 ± 76 cm?1.  相似文献   

3.
Oxygen adsorbed on Pt(111) has been studied by means of temperature programmed thermal desorption spectroscopy (TPDS). high resolution electron energy loss spectroscopy (EELS) and LEED. At about 100 K oxygen is found to be adsorbed in a molecular form with the axis of the molecule parallel to the surface as a peroxo-like species, that is, the OO bond order is about 1. At saturation coverage (θmol= 0.44) a (32×32)R15° diffraction pattern is observed. The sticking probability S at 100 K as a function of coverage passes through a maximum at θ = 0.11 with S = 0.68. The shape of the coverage dependence is characteristic for adsorption in islands. Two coexisting types of adsorbed oxygen molecules with different OO stretching vibrations are distinguished. At higher coverages units with v-OO = 875 cm?1 are dominant. With decreasing oxygen coverages the concentration of a type with v-OO = 700 cm?1 is increased. The dissociation energy of the OO bond in the speices with v-OO = 875 cm?1 is estimated from the frequency shift of the first overtone to be ~ 0.5 eV. When the sample is annealed oxygen partially desorbs at ~ 160K, partially dissociates and orders into a p(2×2) overlayer. Below saturation coverage of molecular oxygen, dissociation takes place already at92 K. Atomically adsorbed oxygen occupies threefold hollow sites, with a fundamental stretching frequency of 480 cm?1. In the non-fundamental spectrum of atomic oxygen the overtone of the E-type vibration is observed, which is “dipole forbidden” as a fundamental in EELS.  相似文献   

4.
The potential energy and surface dipole were calculated as a function of the geometry of the coadsorbed systems using the cluster method and theoretical oscillation frequencies and work function changes were compared with experiment. It was found that the K fills unoccupied Pt 5d states and reduces the local polarizability of the metal. The H2O molecule binds to the K atom, such that the H atoms point towards the surface inducing an increase in the work function. For the CO molecule a charge transfer (KCO) through the surface stabilizes the bond and induces a change of adsorption place (on-topbridge). The K increases the tendency to H2 dissociation because of the local decrease of the work function. Zero-point energy effects add important dynamical features to the electronic H2- surface interaction. Three examples for the Pt(111)-H2 system are presented: (i) A virtual attractive potential well produced by the softening of the H-H bond near the surface, (ii) a virtual potential barrier for dissociation due to the hindering of molecular rotations at the surface, and (iii) a change in the apparent surface temperature in H2 desorption processes.  相似文献   

5.
It is shown in terms of a fully relativistic spin-polarized ab initio-type approach that in Pt/Co/Pt trilayers two types of anisotropic magnetoresistance (AMR) have to be distinguished: an in-plane and an out-of-plane AMR. The obtained results, namely the magnetic field dependence as well as the thickness dependence of both AMR types are in very good agreement with a very recent experimental study, in which the in-plane as well as the out-of-plane AMR was reported for this system. The difference between the two types of AMR is visualized in terms of layer-resolved resistivities. In particular, it is confirmed that the anisotropic interface magnetoresistance (AIMR) introduced in the recent publication mainly originates in the vicinity of the Co/Pt interfaces.  相似文献   

6.
Using the fully relativistic version of the Korringa–Kohn–Rostoker method for electronic structure calculations within local spin density functional theory, the magnetic and spectroscopic properties of Co clusters deposited on Pt(111) have been investigated. Of central interest was the role of spin–orbit coupling, since it influences the spontaneous formation and orientation of magnetic moments and gives rise among other things to the occurrence of orbital magnetic moments, magnetic anisotropy energy and magnetic circular dichroism in X-ray absorption. The results have been complemented by calculations of the exchange coupling parameters Jij used within Monte Carlo simulations on the basis of the extended classical Heisenberg Hamiltonian. This allowed us to simulate the magnetic properties at finite temperatures, which are of central importance for applications. PACS 73.20.-r; 71.15.Rf; 73.22.-f; 87.64.Ni  相似文献   

7.
Oxygen adsorption on the Pt(100) and Pt(111) surfaces was investigated using X-ray photo-emission and thermal desorption spectroscopies. Low pressure (ca. 10?5 Pa) oxygen dosing at near ambient crystal temperature resulted in the formation of dissociated adsorbed species at saturation coverages of nominally 0.2–0.25 monolayer on both surfaces. The combination of higher pressure (ca. 10?3 Pa) and higher surface temperature (570 K) dosing produced a three to five times higher saturation coverage than the low pressure dosing. The effect of dosing condition on the saturation coverage appears to reconcile apparent discrepancies for the Pt(100) surface in the literature. Characterization by XPS of the higher coverage state for oxygen showed that it is in the same chemical state as the oxygen adsorbed at very low coverage. Angle-resolved XPS has shown that in all cases the oxygen appears to reside on the surface with no significant penetration of oxygen into the bulk, as would be characteristic of oxidation. However, some penetration on the surface by oxygen, such as by a place-exchange type restructuring of the first two atomic layers, cannot be entirely ruled out.  相似文献   

8.
《Surface science》1987,182(3):411-422
Linearized augmented plane wave (LAPW) calculations of the structural energies of a H monolayer absorbed on a Pt(111) film predict a fcc site, a H-Pt bond length of 1.86 Å, a symmetric stretch vibration frequency of 166 meV, and an asymmetric stretch frequency of 114 meV. The symmetric stretch is predicted to be weakly dipole active, with an effective charge of 0.054e per unit cell. The results are found to be inconsistent with a nearest-neighbor spring model of the adsorbate dynamics. The site and surface charge density are compared with He diffraction results, and the vibrational frequencies are compared with electron energy loss and inelastic neutron spectra.  相似文献   

9.
The adsorption position of oxygen on the clean Pt(111) surface has been determined by means of the transmission channeling technique. Oxygen adsorbs in a well ordered p(2 × 2) overlayer structure at temperatures 200 T 350 K. From an analysis of the angular scans along the [111], [110] and [100] axial directions it is concluded that the O atoms are adsorbed in the fcc three-fold hollow site exclusively at a height of 0.85 ± 0.06 Å above the Pt surface layer. From a narrowing of the [111] angular O scan, the O RMS displacement parallel to the surface is found to be 0.16 ±0.03 Å.  相似文献   

10.
In this work a comparative analysis between different Pt-Ru(111) surface models and pure Pt(111) surface is presented. Some aspects of the electronic structure of the surfaces and hydrogen adsorption are analysed based on density functional theory calculations. The hydrogen adsorption energy is significantly reduced when Ru is present on the surface. The substitution of Pt atoms by Ru atoms reinforce the Pt-H bond while the metal-metal bond is strongly modified, making the system less stable.  相似文献   

11.
The binding states and sticking coefficients of CO and H2 on clean and oxide covered (111)Pt are examined using flash desorption mass spectrometry and Auger electron spectroscopy (AES). On the clean surface at 78 K there is one major binding state of CO with a desorption activation energy which decreases with coverage plus a second smaller state, while H2 exhibits three binding states with peak temperatures of 140, 230 and 310 K and saturation density ratios of 0.5 : 1 : 1. Desorption kinetics of CO are consistent with a first order state with a normal pre-exponential factor of 1013 ± 1 sec?1, while all three peaks of H2 are broader than expected. Interpretations in terms of anomalous pre-exponential factors, coverage dependent desorption activation energies, and desorption orders are considered. On the oxidized surface saturation densities of both gases are nearly identical to those on the clean surface, but desorption temperatures are increased significantly and the initial sticking coefficient on the oxide decreases slightly for CO and increases slightly for H2.  相似文献   

12.
Cyclic voltammograms for H on Pt(111) and Pt(100) from first principles   总被引:1,自引:0,他引:1  
Cyclic voltammetry is a fundamental experimental method for characterizing electrochemical surfaces. Despite its wide use, a way to quantitatively and directly relate cyclic voltammetry to ab initio calculations has been lacking. We derive the cyclic voltammogram for H on Pt(111) and Pt(100), based solely on density functional theory calculations and standard molecular tables. By relating the gas phase adsorption energy to the electrochemical electrode potential, we provide a direct link between surface science and electrochemistry.  相似文献   

13.
氧原子在Pt表面的吸附和扩散是理解氧化和腐蚀等问题的基础.基于密度泛函理论和周期平板模型研究了氧原子在Pt(111)表面及次表层的吸附,通过扫描隧道显微镜(STM)的理论计算分析了吸附的结构特征.采用CI-NEB方法讨论了氧原子在Pt(111)表面和次表层的扩散过程.研究结果表明氧原子在Pt(111)表面的扩散比较容易,而氧原子向次表层的扩散相对较难,这主要是因为次表层的扩散需要经过一个Pt原子层,必须克服一定的能垒,从而说明过渡金属Pt具有很强的抗氧化性.  相似文献   

14.
The adsorption of oxygen on the stepped Pt(S)-[9(111) × (111)) face has been studied by flash desorption, LEED and AES. On adsorbing oxygen the (1 × 1) LEED pattern of the clean face was transformed into a (2 × 2) pattern. A lower limit of the initial sticking coefficient of 0.06 and a saturation coverage of approximately 0.5 monolayer were determined. The flash desorption spectra exhibited two not completely resolved desorption maxima. From the peak temperatures the activation energies of desorption were estimated to be 41 and 49 kcal/mole. Under the same experimental conditions some experiments were done on a smooth (111) Pt face. However, the results did not differ significantly from those obtained on the stepped surface. In addition on the smooth (111) face the adsorption of oxygen activated in a high frequency discharge was studied. Oxidation was not observed beyond the chemisorption layer which is formed from molecular oxygen.  相似文献   

15.
Theoretical analysis of ORR on Pt (111) was carried out with the combined technique of DFT calculation and the UBI-QEP method in order to understand the overall ORR pathways, behavior of H2O2 formation, and the impact of trifluoromethane sulfonic acid (CF3SO3H and TfOH) coverage, the alternative material of Nafion®, on the reactivity on the Pt surface. The ORR scheme consisting of elementary reactions was then modeled to determine the dominant path and the limiting step based on their activation energies. The results showed that the dominant ORR path included the H2O2 formation step and OOH formation step was limiting. When TfOH covered the Pt surface, it was revealed that the adsorption energy of an O2 molecule on Pt (111) was decreased due to the lower Fermi level and the d-band center, resulting in decreasing the activation energy of the limiting step. TfOH, however, could suppress the O2 adsorption on the Pt surface. In addition, with the TfOH coverage, it was indicated that the limiting step of ORR was shifted to H2O-production step which was after the H2O2 production, resulting in the enhancement of the H2O2 formation.  相似文献   

16.
The growth of ultrathin films of Y2O3(111) on Pt(111) has been studied using scanning tunneling microscopy (STM), X-ray photoemission spectroscopy (XPS), and low energy electron diffraction (LEED). The films were grown by physical vapor deposition of yttrium in a 10? 6 Torr oxygen atmosphere. Continuous Y2O3(111) films were obtained by post-growth annealing at 700 °C. LEED and STM indicate an ordered film with a bulk-truncated Y2O3(111)–1 × 1 structure exposed. Furthermore, despite the lattices of the substrate and the oxide film being incommensurate, the two lattices exhibit a strict in-plane orientation relationship with the [11?0] directions of the two cubic lattices aligning parallel to each other. XPS measurements suggest hydroxyls to be easily formed at the Y2O3 surface at room temperature even under ultra high vacuum conditions. The hydrogen desorbs from the yttria surface above ~ 200 °C.  相似文献   

17.
Mechanism of the associative desorption of oxygen from the Pt(111) surface has been studied on atomic level by means of DFT/GGA calculations and kinetic Monte Carlo simulations. It has been found that two oxygen adatoms can occur, with sufficient probability, in neighboring on-top sites, which is essential for formation and subsequent evaporation of the oxygen molecule. Monte Carlo simulations have demonstrated effectiveness of this channel for O2 formation on Pt(111) and strongly support the suggested model of associative desorption from transition metal surfaces.  相似文献   

18.
The coadsorption of Li and H atoms on Pt(001), Pt(110) and Pt(111) surfaces is studied using density functional theory with generalised gradient approximation. In all calculations Li, H and the two topmost layers of the metal were allowed to relax. At coverage of 0.25 mono-layer in a p(2×2) unit cell, lithium adsorption at the hollow site for the three surfaces is favoured over top and bridge sites. The most favoured adsorption sites for H atom on the Pt(001) and Pt(110) surfaces are the top and bridge sites, while on Pt(111) surface the fcc site appears to be slightly favoured over the hcp site. The coadsorption of Li and atomic hydrogen shows that the interaction between the two adsorbates is stabilising when they are far from each other. The analysis of Li, H and Pt local density of states shows that Li strongly interacts with the Pt surfaces.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号