首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Development of simple and reliable protocols for the synthesis of organically soluble catalytically active metal nanoparticles is an important aspect of research in nanomaterials. We demonstrate herein the formation of Pd nanoparticles by reduction of aqueous Pd(NO(3))(2) by photoexcited Keggin ions (phosphotungstate anions). This results in the formation of Pd nanoparticles capped with with Keggin ions that render the particles negatively charged. The Keggin ion capped Pd nanoparticles may then be phase transferred into nonpolar organic solvents such as toluene by electrostatic complexation with cationic surfactants such as octadecylamine at the liquid-liquid interface. This results in a new class of catalyst wherein both the Pd core and Keggin ion shell may be used in a range of catalytic reactions leading to a truly multifunctional catalyst dispersible in organic solvents.  相似文献   

2.
The drug delivery properties of a series of poly(lactic acid)–poly(ethylene glycol) (PLA–PEG) micellar-like nanoparticles have been assessed in terms of their colloidal stability and their ability to incorporate a water soluble drug. These studies have focused on a range of PLA–PEG copolymers with a fixed PEG block (5 kDa) and a varying PLA segment (3–110 kDa). In aqueous media, these copolymers formed micellar-like assemblies following precipitation from water miscible solvents. There was a controlled increase in the particle size as the molecular weight of the PLA block was increased. The characteristics of the PEG corona were also highly dependent on the PLA moiety. Copolymers with a low molecular weight PLA block (3–15 kDa) formed highly colloidally stable dispersions, with a complete PEG surface coverage. However, increasing the molecular weight of the PLA block resulted in significantly less colloidally stable nanoparticle dispersions, which flocculated in solvents that were significantly better than θ-solvents for the stabilising PEG chains. This can be attributed to a reduced PEG surface coverage and the probable presence of naked PLA ‘patches’ on the particle surface. These larger PLA–PEG nanoparticles (30:5–110:5) were found to be stabilised in the presence of serum components, which are thought to adsorb into the gaps on the particle surface and prevent flocculation. All of the dispersions were found to be stable under physiological conditions and therefore suitable for in vivo administration. A reasonable loading (3.1% w/w) of the micellar-like PLA–PEG 30:5 nanoparticles with the water soluble drug procaine hydrochloride was achieved. The incorporated drug was found to have no effect on the nanoparticle structure or recovery, which can be attributed to the micellar character of these assemblies and the presence of the stabilising PEG chains.  相似文献   

3.
For many applications, it is desirable to stabilize colloids over a wide range of buffer conditions while still retaining surface accessibility for adsorption and reaction. Commonly used charge or steric stabilization cannot achieve this goal since the former is sensitive to salt and the latter blocks the particle surface. We use depletion stabilization in the presence of high molecular weight polyethylene glycol (PEG) to stabilize a diverse range of nanomaterials, including gold nanoparticles (from 10 to 100 nm), graphene oxide, quantum dots, silica nanoparticles, and liposomes in the presence of Mg(2+) (>1.6 M), heavy metal ions, extreme pH (pH 1-13), organic solvents, and adsorbed nucleosides and drugs. At the same time, the particle surface remains accessible for adsorption of both small molecules and macromolecules. Based on this study, high loading of thiolated DNA was achieved in one step with just 2% PEG 20,000 in 2 h.  相似文献   

4.
丙烯酰胺在聚乙二醇水溶液中的聚合动力学   总被引:10,自引:0,他引:10  
用改进溴法对丙烯酰胺 (AM)在聚乙二醇 (PEG)水溶液中聚合动力学进行研究 .在单一和氧化还原引发体系中分别考察了引发剂、单体和PEG用量、不同HLB值乳化剂以及聚合温度等因素对动力学的影响 .得到AM聚合速率与过硫酸铵 (APS)浓度的 0 91次方成正比 ;单一APS和APS 三乙醇胺 (TEA)氧化还原引发体系中的AM聚合表观活化能分别为 96 1和 4 2 3kJ mol.  相似文献   

5.
崔亮  李洋  侯小东  宫文娟  徐宇虹  曹阿民 《化学学报》2007,65(19):2181-2186
采用液相多肽合成法制备得到窄分子量分布、结构可控的生物相容性聚乙二醇嵌段共聚树枝状聚赖氨酸阳离子功能大分子(PEG-b-Dendritic PLL). 运用1H NMR核磁共振、凝胶电泳以及荧光淬灭滴定手段对所得阳离子两嵌段大分子的化学结构及其与质粒DNA (pDNA)结合作用与复合行为进行了研究. 结果表明聚乙二醇嵌段树枝状聚赖氨酸与pDNA分子可以在缓冲溶液中形成稳定的胶束, pDNA与阳离子树枝赖氨酸嵌段通过静电相互作用形成胶束核, 其水溶性聚乙二醇嵌段形成水溶性胶束壳, 提高了阳离子大分子/pDNA复合胶束的稳定性. 同时发现随着阳离子嵌段树枝状赖氨酸代数的增加, 阳离子两嵌段大分子与pDNA的结合作用增强, 有利于其作为基因转染生物功能载体的应用.  相似文献   

6.
多肽和蛋白质的聚乙二醇化修饰方法   总被引:2,自引:0,他引:2  
王良友  刘克良 《有机化学》2003,23(11):1320-1323
聚乙二醇是一类具有独特理化性质的大分子聚合物。多肽和蛋白质类药物经聚 乙二醇共价修饰后能明显改善其药代学和药效学性质,如降低免疫原性、增加对蛋 白水解酶的稳定性、增加水溶性及延长体内的半衰期等。蛋白质的聚乙二醇化修饰 研究已取得较好的效果,多肽的聚乙二醇化修饰研究起步较晚。对近年来多肽和蛋 白质的聚乙二醇化修饰方法进行了综述,主要介绍了对多肽和蛋白质的N端、C端及 某些氨基酸侧链进行选择性聚乙二醇化修饰的方法。  相似文献   

7.
甲壳素和壳聚糖作为天然生物高分子材料的研究进展   总被引:9,自引:0,他引:9  
甲壳素是自然界中含量仅次于纤维素的天然高分子,壳聚糖是甲壳素脱乙酰化后带有阳离子的多糖.壳聚糖中的自由氨基以及它的高结晶性,使得它能溶于酸,而不溶于碱和绝大数的有机溶剂.同时壳聚糖具有无毒性、无刺激性、良好的生物相容性、生物可溶解性, 以及高的电荷密度,因而被作为一种新型的天然生物材料得到广泛应用.文章介绍了甲壳素和壳聚糖的结构和性质,综述分析了甲壳素和壳聚糖在制备微球和作为支架材料中的应用, 并总结了甲壳素和壳聚糖在这两个方面存在的问题和发展前景.  相似文献   

8.
PEG-stabilized cobalt nanoparticles were prepared by thermal decomoposition of [Co2(CO)8] in PEG and were shown to be highly active and selective catalysts, for intra- and intermolecular Pauson-Khand reactions (PKR), in organic solvents or aqueous media.  相似文献   

9.
This paper describes the creation of hybrid surfaces containing cationic nanoparticles and biocompatible PEG (polyethylene glycol) brushes that manipulate bacterial adhesion for potential diagnostic and implant applications. Here, ~10 nm cationically functionalized gold nanoparticles are immobilized randomly on negative silica surfaces at tightly controlled surface loadings, and the remaining areas are functionalized with a hydrated PEG brush, using a graft copolymer of poly-l-lysine and PEG (PLL-PEG), containing 2000 molecular weight PEG chains and roughly 30% functionalization of the PLL. The cationic nanoparticles attract the negative surfaces of suspended Staphylococcus aureus bacteria while the PEG brush exerts a steric repulsion. With the nanoparticle and PEG brush heights on the same lengthscale, variations in ionic strength are demonstrated to profoundly influence the capture of S. aureus on these surfaces. For bacteria captured from gentle flow, a crossover from multivalent to univalent binding is demonstrated as the Debye length is increased from 1 to 4 nm. In the univalent regime, 1 um diameter spherical bacteria are captured and held by single nanoparticles. In the multivalent regime, there is an adhesion threshold in the surface density of nanoparticles needed for bacterial capture. The paper also documents an interesting effect concerning the relaxations in the PLL-PEG brush itself. For brushy surfaces containing no nanoparticles, bacterial adhesion persists on newly formed brushes, but is nearly eliminated after these brushes relax, at constant mass in buffer for 12h. Thus brushy relaxations increase biocompatibility.  相似文献   

10.
Fluorescence correlation spectroscopy (FCS) and gel electrophoresis measurements are performed to investigate both the number and size of complexes of linear double-stranded DNA (dsDNA) fragments with 1:1 diblock copolymers consisting of a cationic moiety, branched polyethyleneimine (bPEI) of 2, 10, or 25 kDa, covalently bound to a neutral shielding moiety, poly(ethylene glycol) (PEG; 20 kDa). By systematically decreasing the bPEI length, the PEG grafting density along the DNA chain can be directly controlled. For 25 and 10 kDa bPEI-PEG copolymers, severe aggregation is observed despite the presence of the shielding PEG. Upon decreasing the bPEI length to 2 kDa, controlled self-assembly of monomolecular DNA nanoparticles is observed. The resulting complexes are in quantitative agreement with a theoretical model based on a single DNA encased in a dense PEG polymer brush layer. The resulting PEGylated complexes show high stability against both salt and protein and hence are of potential use for in vivo gene delivery studies.  相似文献   

11.
Surface ligand molecules enabling gold nanoparticles to disperse in both polar and nonpolar solvents through changes in conformation are presented. Gold nanoparticles coated with alkyl-head-capped PEG derivatives were initially well dispersed in water through exposure of the PEG residue (bent form). When chloroform was added to the aqueous solution of gold nanoparticles, the gold nanoparticles were transferred from an aqueous to a chloroform phase through exposure of the alkyl-head residue (straight form). The conformational change (bent to straight form) of immobilized ligands in response to the polarity of the solvents was supported by NMR analyses and water contact angles.  相似文献   

12.
The syntheses and spectroscopic properties of a series of pegylated zinc(II)-phthalocyanines (Zn-Pcs) containing one, two, or eight tri(ethylene glycol) chains are described. The single molecular structure of a phthalonitrile precursor containing one hydroxyl and one PEG group, and its unique intermolecular hydrogen bonding are presented. The pegylated Pcs are highly soluble in polar organic solvents and have fluorescence quantum yields in the range 0.08-0.28.  相似文献   

13.
This report demonstrates a process to form polysaccharide glassy particles without water–oil or water–air interfaces as well as ionic polymers and its application in formulating sustained‐release dosage forms for structurally delicate proteins. When a co‐solution containing dextran and polyethylene glycol (PEG) was subjected to freeze‐drying, the dextran separated out of the solution to form dispersed phases surrounded by a PEG‐rich continuous phase and was solidified during subsequent lyophilization to fine glassy particles, 1–2 µm in diameter. Water‐soluble proteins can easily be loaded in these glassy particles due to preferential partition and become resistant to organic solvents simply by adding them into the dextran‐PEG co‐solution. After washing away the PEG continuous phase with organic solvents, the protein‐containing glassy particles can be suspended in a hydrophobic polymer solution and formulated into various pharmaceutical dosage forms and medical devices for sustained‐release protein delivery. In the present study, myoglobin, bovine serum albumin (BSA), and β‐galactosidase (β‐gal) were formulated in PLGA mcirospheres and as model proteins using this glassy particulate approach, and subjected to a series of assays for release kinetics, structural integrity, and bioactivity. The experimental results indicated that this system offered well preserved protein integrity and bioactivity as well as significantly improved protein release kinetics. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
Perfect dendrimers that contain perfluorinated shells have recently attracted attention because they have been shown to encapsulate polar molecules in supercritical CO(2) and catalytically active metal nanoparticles in perfluorinated solvents. Moreover, they can then be easily separated after reaction from the biphasic organic/fluorous system. In this paper several dendritic architectures that contain perfluorinated shells were derived by covalent modification of glycerol dendrimers ([G0.5]-[G3.5]), hyperbranched polyglycerol, and polyethyleneimine. These core-shell architectures show interesting physicochemical properties. For example, they are soluble in fluorinated solvents, they are able to transport different guest molecules, and they display thermomorphic behavior. The transport capacity of these molecular nanocarriers increases significantly when amino groups are present in the core. Certain functionalized polyethyleneimines that contain perfluorinated shells show high transport capacities (up to 3 dye molecules per nanocarrier) in perfluorinated solvents. Moreover, these perfluoro-functionalized dendritic polyethyleneimines can act as templates that stabilize nanoparticles; for example, encapsulation and subsequent chemical reduction of Ag(I) ions. Silver nanoparticles with a narrow size distribution (3.9+/-1 nm) have been prepared and characterized by transmission electron microscopy. Furthermore, it has been demonstrated that the encapsulated guest molecules remain accessible to small molecules after transport into the fluorous phase. Therefore, dendritic nanocarriers that contain perfluorinated shells are currently being investigated as polar environments in nonpolar reaction media such as fluorous phases and supercritical CO(2), in particular, for application in homogenous catalysis.  相似文献   

15.
《Analytical letters》2012,45(16):2721-2731
In the present work a novel strategy for improving and/or tuning the selectivity of gas chromatographic (GC) separation by combining three different stationary phases (SPs) without premixing was introduced. A fused silica fiber coated with polydimethylsiloxane (SE30) and another coated with cyanopropylphenylmethylpolysiloxane (OV1701) were serially inserted into an 8-m polyethylene glycol 20 M (PEG20M) capillary column to form a GC annular column with ternary SP, abbreviating as SE30-OV1701-CF/PEG20M-CC. The separation capability of this ternary SP annular column was compared with a SE30-coated fiber-in-PEG20M-coated capillary annular column and a PEG20M-coated open tubular column by a test mixture of 19 organic compounds. Among these three columns, SE30-OV1701-CF/PEG20M-CC produced the best separation when the SE30-coated fiber and OV1701-coated fiber was 3 and 5 m, respectively. Selectivity can be easily tuned by changing the length of the SP-coated fibers in the ternary SP annular column. The proposed ternary SP annular column shows additional tunability, thus making it a promising tool for separation of organic solvents that are often used in the manufacturing process of pharmaceutical formulations and lacquer thinners.  相似文献   

16.
Gold nanoparticles functionalized with thiol-modified DNA have been widely used in making various nanostructures, colorimetric biosensors, and drug delivery vehicles. Over the past 15 years, significant progress has been made to improve the stability of such functionalized nanoparticles. The stability of the gold-thiol bond in this system, however, has not been studied in a systematic manner. Most information on the gold-thiol bond was obtained from the study of self-assembled monolayers (SAMs). In this study, we employed two fluorophore-labeled and thiol-modified DNAs. The long-term stability of the thiol-gold bond as a function of time, salt, temperature, pH, and organic solvent has been studied. We found that the bond spontaneously dissociated under all tested conditions. The dissociation was favored at high salt, high pH, and high temperature, and little DNA degradation was observed in our system. Most organic solvents showed a moderate protection effect on the gold-thiol bond. The stability of the gold-thiol bond in the DNA system was also compared with that in SAMs. While there are many similarities, we also observed opposite trends for the salt and ethanol effect. This study suggests that the purified DNA-functionalized gold nanoparticles should be freshly prepared and used in a day or two. Long-term storage should be carried out at relatively low temperature in low salt and slightly acidic buffers.  相似文献   

17.
Structurally well-defined PMMA-grafted palygorskite nanoparticles were prepared by modifying the surface of palygorskite nanoparticles with initiators for reverse atom transfer radical polymerization (reverse ATRP) and by using these initiator-modified nanoparticles as macroinitiators. Reverse ATRP from palygorskite nanoparticles was then performed to attach well-defined polymer on to an inorganic core. It has been found that the dispersibility of palygorskite particles in organic solvents is significantly improved by grafting polymers onto the surface of palygorskite particles. The polymer-grafted palygorskite nanoparticles possess excellent decoloration capacity in organic solvents.  相似文献   

18.
We demonstrate the phase transfer of silver nanoparticles synthesized in an aqueous medium into hexane containing the cationic surfactant octadecylamine (ODA). During vigorous shaking of the biphasic mixture, rapid phase transfer of the silver nanoparticles into the organic phase was observed. The phase transfer of the silver nanoparticles arises due to coupling of the silver nanoparticles with the ODA molecules present in organic phase via either coordination bond formation or weak covalent interaction. This process renders the nanoparticles sufficiently hydrophobic and dispersible in the organic phase. The ODA-stabilized silver nanoparticles could be separated out from the organic phase in the form of a powder and are readily redispersible in different organic solvents. The nature of binding of the ODA molecules to the silver nanoparticle surface was characterized using UV-vis spectroscopy, thermogravimetry, transmission electron microscopy, nuclear magnetic resonance spectroscopy, X-ray photoemission spectroscopy, and Fourier transform infrared spectroscopy.  相似文献   

19.
The 1,2-diphenylethylenediamine-based neutral or cationic organogelator-templates, currently employed in the production of silica nanomaterials, were initially evaluated for their versatile gelation ability and found to be gelled in the majority of organic solvents tested. Scanning electron microscope and transmission electron microscope, images of neutral organogels made from different solvents revealed that they assembled into a plate-shaped, or rod-shaped morphology, respectively in ethanol or butan-1-ol and in acetonitrile or tetrahydrofurane. Similarly, a 1: 1 mixture (mass) of neutral and cationic gelators formed different morphologies in the solvents tested. Sol-gel polycondensation of tetraethoxy silane using either individual gels (neutral or cation) or a 1: 1 mixture of gels was explored. The experimental results and the scanning electron microscopy and transmission electron microscopy images revealed that silica nanotubes with an inner diameter of 82 nm and an outer diameter of 620 nm were obtained from the 1: 1 mixture of neutral and cationic gelator in ethanol, whereas silica nanoparticles were obtained using gels made in the other solvents tested.  相似文献   

20.
In this paper, we describe a new procedure to phase transfer large gold nanoparticles (diameters > 45 nm) from aqueous solution to organic solvents. This is accomplished using a covalent amide coupling reaction that incorporates dicyclohexylamine (DCHA) headgroups on the surface of mercaptoacetic acid (MAA) functionalized gold nanoparticles. Gold nanoparticles are first synthesized in aqueous solution by the citrate-reduction method, and nanoparticle size is controlled by the molar ratio of the reducing agent (sodium citrate) and the gold precursor (KAuCl4). MAA is then adsorbed to the surface of the gold nanoparticles followed by an amide-coupling reaction to covalently attach DCHA to the surface-immobilized MAA. The bulky dicyclohexyl groups entropically stabilize gold nanoparticles in organic solvents. This procedure was used to reliably transfer gold nanoparticles with diameters between 45 and 100 nm from aqueous solution to organic solvents such as dimethyl sulfoxide and chloroform.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号