首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Size selected silicon clusters have been isolated in rare gas matrices and studied by optical absorption spectroscopy. The clusters were produced in a pulsed laser vaporization source, size selected with a quadrupole mass spectrometer and deposited at low energies into a cocondensed krypton matrix held at T<20 K. A comparison of the optical spectra of ten atom wide bands (Si25-Si35, Si35-Si45 and Si45-Si55) shows the general size evolution of the optical properties. Single cluster sizes have also been isolated and show somewhat sharper spectra than the bands. The measured spectra show similarities to spectra calculated using Mie theory and bulk optical constants. Cluster-cluster agglomeration was studied by evaporating the inert gas matrix. The results suggest that the clusters agglomerate into larger particles even under the mildest "soft landing" conditions.  相似文献   

2.
ART-2a and a density based cluster method, density based spatial clustering of application with noise (DBSCAN), have been used for classification of the single particle mass spectra measured at New York City. Using too large of a vigilance factor in ART-2a leads to many similar clusters with overlap, and thus a low vigilance factor was used in this study. The DBSCAN method can identify clusters with complex shapes and various sizes, and representative spectra are chosen to identify different particle types within each cluster. The cluster structure of the single particle mass spectra were examined by DBSCAN. Both methods found that the major clusters were sea salt and anthropogenic combustion emissions. The continua in sulfate, potassium and OC particles were found by DBSCAN and a large cluster was formed, while ART-2a broke it into several small clusters without finding this continuum. A detailed discussion of the cluster analysis results including representative mass spectra, size distributions and temporal behavior will be provided.  相似文献   

3.
Metal clusters have been produced using a laser evaporation source. A Nd-YAG laser beam focused onto a solid silver rod was used to evaporate the material, which was then cooled to form clusters with the help of a pulsed high pressure He beam. TOF mass spectra of these clusters reveal a strong occurrence of small and medium sized clusters (n<100). Clusters were also deposited onto grid supported thin layers of carbon-films which were investigated by transmission electron microscopy. Very high resolution pictures of these grids were used to analyze the size distribution and the structure of the deposited clusters. The diffraction pattern caused by crystalline structure of the clusters reveals 3-and 5-fold symmetries as well asfcc bulk structure. This can be explained in terms of icosahedron and cuboctahedron type clusters deposited on the surface of the carbon layer. There is strong evidence that part of these cluster geometries had already been formed before the depostion process. The non-linear dependence of the cluster size and the cluster density on the generating conditions is discussed. Therefore the samples were observed in HREM in the stable DEEKO 100 microscope of the Fritz-Haber-Institut operating at 100 KV with the spherical aberrationc S =0.5 mm. The quality of the pictures was improved by using the conditions of minimum phase contrast hollow cone illumination. This procedure led to a minimum of phase contrast artefacts. Among the well-crystallized particles were a great amount of five- and three-fold symmetries, icosahedra and cuboctahedra respectively. The largest clusters with five- and three-fold symmetries have been found with diameters of 7 nm; the smallest particles displaying the same undistorted symmetries were of about 2 mm. Even smaller ones with strong distortions could be observed although their classification is difficult. The quality of the images was improved by applying Fourier filtering techniques.  相似文献   

4.
The condensation of pure superheated water vapour and of a mixture with carbon dioxide in a supersonic jet behind a sonic nozzle has been investigated by the nozzle molecular beam method. The relation of source temperature, pressure, and nozzle diameter necessary for fully developed condensation has been determined for the pure vapour. By using the retarding potential technique, the cluster size distribution function and the dependence of the mean cluster size on the nozzle source conditions have been obtained. Mass-spectrometric measurements of the beam composition in a mixture expansion have revealed the presence of both homogeneous and heterogeneous clusters. The fully developed condensation in CO2-H2O mixture was found to begin at a smaller total source pressure than in pure water vapour or carbon dioxide.  相似文献   

5.
Bismuth clusters are produced by the inert gas condensation technique. The cluster beam is analysed by time of flight mass spectrometry and is simultaneously deposited on an amorphous carbon film. We compare two kinds of deposition: molecular beam and free clusters deposition (18 Å mean size). Cluster deposition exhibits a larger mean particle size on the support. The two kinds of deposition may be correlated with the Schmeisser's law.  相似文献   

6.
Although great achievements have been made in the synthesis of giant lanthanide clusters, novel structural models are still scarce. Herein, we report a giant lanthanide cluster Dy76, constructed from [Dy33‐OH)4] and [Dy54‐O)(μ3‐OH)8] building blocks. As the largest known Dy cluster, the structure of Dy76 can be seen as arising from the fusion of two Dy48 clusters; these clusters can be isolated under various synthetic conditions and were characterized by single‐crystal X‐ray diffraction. This new, fused structural model of the pillar motif has not been found in Ln clusters. Furthermore, the successful conversion of Dy76 back into Dy48 in a retrosynthetic manner supports the proposed fusion formation mechanism of Dy76. Electrospray ionization mass spectrometry (ESI‐MS) analysis suggests that the metal cluster skeleton of Dy76 shows good stability in various solvents. This work not only reveals a new structural type of Ln clusters but also provides insight into the novel fusion assembly process.  相似文献   

7.
Electron attachment and electron impact ionization of SF6 clusters have been investigated quantitatively in a molecular beam/electron ion source/mass spectrometer system as a function of electron energy E (0≤E≤180 eV) and as a function of cluster size.  相似文献   

8.
This paper studies the velocity distributions and diffusing behaviors of the atoms in a nano-alloy cluster. A series of ternary alloy clusters, Au50Cu25Ni25, and binary alloy clusters, Cu100−aNia are introduced in the molecular dynamics simulations. The velocity distributions of different types of atoms in both static and moving clusters are found to obey the Maxwell’s velocity distribution with the individual mass of atoms and the inner temperature of clusters. Furthermore, the velocity distribution of whole atoms of the cluster is obtained by synthesizing the velocity distributions of compositions in the cluster according to the proportions. The consistency of the atomic motions in a moving cluster is discussed by inspecting the backward velocities of atoms, which are correlated to the translational velocity and the inner temperature of the cluster. The diffusing behaviors of the atoms in a cluster are also investigated from a viewpoint of the interatomic interactions, i.e. Cu atoms enhance the activities of Ni atoms, or Ni atoms reduce that of Cu atoms in the alloy clusters.  相似文献   

9.
Sputter depth profiling of organic films while maintaining the molecular integrity of the sample has long been deemed impossible because of the accumulation of ion bombardment-induced chemical damage. Only recently, it was found that this problem can be greatly reduced if cluster ion beams are used for sputter erosion. For organic samples, carbon cluster ions appear to be particularly well suited for such a task. Analysis of available data reveals that a projectile appears to be more effective as the number of carbon atoms in the cluster is increased, leaving fullerene ions as the most promising candidates to date. Using a commercially available, highly focused C60q+ cluster ion beam, we demonstrate the versatility of the technique for depth profiling various organic films deposited on a silicon substrate and elucidate the dependence of the results on properties such as projectile ion impact energy and angle, and sample temperature. Moreover, examples are shown where the technique is applied to organic multilayer structures in order to investigate the depth resolution across film-film interfaces. These model experiments allow collection of valuable information on how cluster impact molecular depth profiling works and how to understand and optimize the depth resolution achieved using this technique.  相似文献   

10.
A capillary pickup method was investigated for doping molecules into water clusters, which were produced by supersonic expansion, and underwent a sticking collision with a crossed beam from the capillary. This method was applied to H2O clusters in a beam with pickup of DCl, CH3OH, NH3, CO2 and D2O molecules, however, we found only molecule of DCl can be picked up by water clusters with the capillary configuration in those tested dopants. Meanwhile, two different distances between the capillary to the nozzle were investigated based on the collected mass spectra, and we found that the smaller distance can obtain the stronger mixed cluster intensity.  相似文献   

11.
Summary Tantalum oxide films with a thickness of 100 nm for the application in high power laser systems have been prepared on SiO2-substrates by ion beam sputtering or electron beam evaporation. Comparative analysis of both groups of dielectric films has been performed with the separate bombardment mode of secondary neutral mass spectrometry SNMS, X-ray induced photoelectron spectroscopy XPS, thermal desorption spectroscopy TDS and total reflection X-ray fluorescence analysis TRFA.
Analyse von aufgesputterten und aufgedampften Tantaloxid-Schichten auf SiO2 mit Hilfe von SNMS, XPS, TDS und TRFA
  相似文献   

12.
A supersonic beam is employed to produce benzene clusters (C6H6) n up ton=40. Mass analysis is achieved after two-photon ionization in a reflectron mass spectrometer. Photon energy is chosen so that the internal energy of the cluster ions is less than 700 meV and a slow decay on the µs time scale is observed. By an energy analysis with the reflecting field it is found that the elimination of one neutral benzene monomer is the favoured dissociation process of the cluster ions. Information about the dissociation pathways of the cluster ions is essential if one is to obtain neutral cluster abundances from the ion mass spectrum. Furthermore an experimental method is presented to obtain pure intermediate state (S 1←S0) spectra of selected clusters without interferences from the other clusters present in the molecular beam. This method is based on the observation of the metastable decay of the corresponding cluster ion. When the metastable signal is recorded as a function of photon energy it reflects theS 1S 0 intermediate state spectrum. Spectra are presented for the benzene dimer, trimer, tetramer and pentamer.  相似文献   

13.
Thin films deposited on silicon substrate by three different methods of plasma polymerization of acetylene were analyzed by direct laser desorption/ionization Fourier transform mass spectrometry. High-resolution mass spectra showed the presence of carbon clusters and hydrocarbon oligomers in different relative abundances. During unipolar and continuous discharge polymerization of acetylene-hydrogen gas mixtures, quadrupole mass spectra of the plasma constituents showed the presence of molecular species with m/z lower than 100 — mainly peaks of C4H2 and C6H2. Films produced had smooth surfaces and the corresponding LDI-FTMS spectra displayed only carbon cluster signals in the positive ion mode and both hydrocarbon and carbon cluster signals (with much higher relative abundance of carbon cluster signals) in the negative ion mode. Alternatively, during bipolar discharge with either higher acetylene gas flux (>40 cm3/min) or longer deposition times (>10 min), quadrupole mass spectra of the plasma constituents showed signals corresponding to polycyclic aromatic hydrocarbons (PAH) with m/z higher than 100. SEM pictures of the bipolar thin films demonstrated the presence of “flower” structures and nanoparticles developed on the surface. LDI-FTMS spectra of such thin films showed either total absence or lower relative abundance of carbon cluster signals, compared with hydrocarbon signals.  相似文献   

14.
First results are presented from a new apparatus, consisting of a supersonic beam for generating neutral clusters, a variable energy electron gun for ionizing the clusters, and a tandem mass spectrometer set-up for studying surface induced reactions of mass and energy selected cluster ions. Rare gas cluster ions, fragment ions from SF6, benzene ions and benzene cluster ions have been investigated so far. Cluster ion dissociation, intracluster ion molecule reactions and surface reactions with adsorbed hydrocarbons have been shown to be important reaction channels for these ion-surface collision at energies ranging from a few eV to 500 eV. The surface induced fragmentation spectrum is demonstrated to be a useful tool for probing binding energy and structure of cluster ions.  相似文献   

15.
Pulse supersonic outflow of Ar, SiH4 and Ar + SiH4 gas mixture (where monosilane is a small admixture) was studied experimentally by the method of molecular beam mass-spectrometry. Using argon as an example we have shown that condensation processes at the quasi-stationary region of a pulse flow and within a stationary jet are similar. In the flows of pure gases clusters of argon and silane (hydrogenated silicon) and in the mixture argon – silane complexes were registered. The dependencies of the intensities of monomer and cluster ions on stagnation pressure were investigated. It was shown that in the mixture jet at low stagnation pressures the condensation process with the formation of monosilane clusters takes place and at high pressures mixed argon-silane complexes are formed. The parameters of flow transition into the regime of developed condensation were determined for pure gases and their mixture.  相似文献   

16.
17.
The scattering behavior of neutral ammonia clusters off a LiF(100) surface is studied. Ammonia clusters are produced by a coexpansion of NH3 and Kr with an average kinetic energy of 48 meV per monomer molecule. Using single photon VUV laser ionization at λ = 118 nm (hv = 10.49 eV) the mass distribution of scattered particles is obtained in a reflecting time-of-flight mass spectrometer. Compared with the incoming cluster beam the average cluster size of the scattered particles is drastically decreased. The angular distribution of NH 3 + and NH 4 + after scattering reveals a strong inelastic interaction between the clusters and the LiF(100) surface which is described in the context of a thermokinetic model and a phonon excitation along the (001) azimuth of the LiF(100) surface.  相似文献   

18.
A method based upon the tandem use of the Time-Of-Flight and Surface-Induced-Dissociation techniques is proposed for estimating the average cluster size in a neutral molecular beam. It consists of sending the beam through a buffer gas and measuring the variations of the average beam velocity as a function of the buffer gas pressure. The clusters are detected at the mass of the monomer by surface induced dissociation in the ionization source. This method has been applied to an argon cluster beam and the results are in good agreement with determinations using high energy electron diffraction. This technique appears to be a simple alternative for estimating mean cluster sizes in the range of 100 to a few 1000 monomers.  相似文献   

19.
The desorption energies of supported sodium clusters have been determined as a function of cluster size. Na n clusters were formed by surface diffusion of sodium atoms adsorbed from a thermal atomic beam on a LiF(100) single crystal. Measurements have been performed by temperature programmed thermal desorption. The signals reflect fractional order desorption kinetics. The average cluster size could be controlled by varying the total number of sodium atoms on the surface. It was determined from scattering experiments. We find that the binding energies vary between 0.55 and 0.8 eV and only approach a constant value for clusters with diameters as large as 1,000 Å.  相似文献   

20.
A neutral C60 fullerene beam is ionised by 308 nm laser pulses. For each cluster sizeC n + , 0n60 of the typical bimodal mass distributions known from the literature [1] velocity distributions have been determined by a time of flight method. A consistent interpretation of the measured mean velocities is obtained when binary fission of the parent molecule is assumed to be responsible for the fragmentation patterns, the total kinetic energy release being 0.45±0.1 eV independent of fragment mass and of laser fluence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号