首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The luminescence spectra of the polycrystalline compounds [Cr(CH2NH2COO)3 · H2O] and [Cr2(OH)2(CH2NH2COO)4] are investigated in the temperature range of 120K – 4.2K. From the known crystal structure (P21/c =D 2h /5 ) of the mononuclear compound assignment of the zero-phonon bands based on crystal field theory becomes possible. Both of the highly intense phosphorescence transitions are observed at \(P_1 = 14493 cm^{ - 1} ({}^2A'' \xrightarrow{{0.0}} {}^4A) and P_2 = 14428 cm^{ - 1} ({}^2A' \xrightarrow{{0.0}} {}^4A)\) . Assignment of the accompanying vibronic bands is made from the measured infrared data. Crystal field parameters Dq, B and C are determined from the luminescence and reflectance spectra. In the case of the binuclear compound the Cr3+-Cr3+ interaction via hydroxyl brides may be described by an axchange operator \(H_{ex} = - 2 \sum\limits_{ij} {J_{ij} S_i^a \cdot S_j^a } \) and from this the energy level diagram is calculated. Both observed strong phosphorescence bands at 14369 cm?1 and 14184 cm?1 are assigned to \(\left| {{}^2E \cdot {}^4A_2 \rangle _{s = 2} \xrightarrow{{0.0}}} \right| {}^4A_2 \cdot {}^4A_2 \rangle _{s = 2} and \left| {{}^2E \cdot {}^4A_2 \rangle _{s = 1} \xrightarrow{{0.0}}} \right| {}^4A_2 \cdot {}^4A_2 \rangle _{s = 1} \) transitions.  相似文献   

2.
Measurements have been made of the Raman spectra of aqueous solutions of Be(ClO4)2, BeCl2, (NH4)2SO4 and BeSO4 to 50 cm−1. In some cases low concentrations (0.000770 mol⋅kg−1) have been used and two temperatures (23 and 40 °C) were studied. In BeSO4(aq), the ν 1-SO42-\mathrm{SO}_{4}^{2-} mode at 980 cm−1 broadens with increasing concentration and shifts to higher wavenumbers. At the same time, a band at 1014 cm−1 is detectable with this mode being assigned to [BeOSO3], an inner-sphere complex (ISC). Confirmation of this assignment is provided by the simultaneous appearance of stretching bands for the Be2+-OSO32-\mathrm{Be}^{2+}\mbox{-}\mathrm{OSO}_{3}^{2-} bond of the complex at 240 cm−1 and for the BeO4 skeleton mode of the [(H2O)3BeOSO3] unit at 498 cm−1. The ISC concentration increases with higher temperatures. The similarity of the n1-SO42-\nu_{1}\mbox{-}\mathrm{SO}_{4}^{2-} Raman bands for BeSO4 in H2O and D2O is further strong evidence for formation of an ISC. After subtraction of the ISC component at 1014 cm−1, the n1-SO42-\nu_{1}\mbox{-}\mathrm{SO}_{4}^{2-} band in BeSO4(aq) showed systematic differences from that in (NH4)2SO4(aq). This is consistent with a n1-SO42-\nu_{1}\mbox{-}\mathrm{SO}_{4}^{2-} mode at 982.7 cm−1 that can be assigned to the occurrence of an outer-sphere complex ion (OSCs). These observations are shown to be in agreement with results derived from previous relaxation measurements. Infrared spectroscopic data show features that are also consistent with a beryllium sulfato complex such as the appearance of a broad and weak n1-SO42-\nu_{1}\mbox{-}\mathrm{SO}_{4}^{2-} mode at ∼1014 cm−1, normally infrared forbidden, and a broad and asymmetric n3-SO42-\nu_{3}\mbox{-}\mathrm{SO}_{4}^{2-} band contour which could be fitted with four band components (including n3-SO42-(aq)\nu_{3}\mbox{-}\mathrm{SO}_{4}^{2-}(\mathrm{aq})). The formation of ISCs in BeSO4(aq) is much more pronounced than in the similar MgSO4(aq) system studied recently.  相似文献   

3.
Ab initio embedded cluster calculations have been performed on $\hbox{Pr}^{3+}$ -doped $\hbox{Lu}_2\hbox{O}_3$ , in order to investigate the mechanism responsible for the highly efficient $^3P_0\rightarrow^1D_2$ non-radiative relaxation experimentally observed. $(\hbox{PrO}_6)^{9-}$ embedded clusters representing the C 2 and S 6 substitutional sites of Pr3+:Lu2O3 have been studied using wave function-based methods. It is found that an outward relaxation of the first coordination sphere around the impurity takes place upon doping. At the relaxed geometry of the lowest spin triplet 4f5d state, all the 4f5d states lie much higher in energy than all 4f 2 states (except the 1S multiplet). This result is in opposition to the interpretation of intersystem crossing through a low-lying 4f5d excited state of Pr3+ as the mechanism for the fast non-radiative 3 P 0????1 D 2 relaxation proposed in the literature. Absorption to the lowest spin triplet 4f5d state is calculated to be around 4,800?cm?1 higher for the C 2 site than for the S 6 site, supporting the assignment of bands in the excitation spectrum previously reported.  相似文献   

4.
The i.r. and Raman spectra (30–4000 cm−1) of 1-formyl-3-thiosemicarbazide (FTSC) and deuterated ftsc-d4, have been studied. Most of the vibration modes reveal pairs of bands and show strong temperature dependence. A band group {ν(NNH2)} at ∼ 1100 cm−1 exhibits well resolved doublet (1095 and 1112 cm−1) structure below 100 k. The intensity in the 11 12 cm−1 band decreases regularly (band disappears at 150 K) with the rise in temperature. Two new bands at 955 and 1070 cm−1 appear while measured above 400 K. The system eventually exists in several conformers in simultaneous equilibria. Moreover, a few bands {e.g. ν(CO), ν(CS) and ν(CH)} that show strong intensifies in i.r. exhibit weak (or zero) intensifies in the Raman and vice-versa. The features (characteristic of u and g vibration species) could be explained by a C2h pseudo symmetry space group proposed for the system. Both the FTSC and FTSC-d4 represent strong molecular associations. This favours the maximum abundance in the dimer stabilized conformers.  相似文献   

5.
The absorption spectrum of the U3+ ion in anhydrous formic acid was recorded in the range 4100–23,000 cm?1. The electrostatic, spin-orbit and configuration interaction parameters obtained from a least-squares fit to eight observed levels are: E1 = 2882.7 cm?1, E2 = 13.8 cm?1, E3 = 285.4 cm?1, ξ5f = 1654 cm?1, α = 19.8 cm?1, β = ?380.3 cm?1 and γ = 1000.0 cm?1. Intensity calculations gave good agreement with the oscillator strengths of observed bands only if some of the experimental band areas were combined.  相似文献   

6.
Raman spectroscopic measurements were performed on aqueous acid to neutral silica-bearing solutions (0.005 ≤ m Si ≤ 0.02, 0 ≤ pH ≤ 8) and Al–silica solutions at temperature from 20 to 150°C. At 20°C, the spectrum of silica-bearing solutions exhibits only the bands of water and a completely polarized band at 785 cm?1. This band is attributed to the ν1 band of the tetrahedral Si(OH)4 molecule. In ${\text{Si(OH)}}_{\text{4}} {\kern 1pt} {\kern 1pt} - {\kern 1pt} {\text{AlCl}}_3 {\kern 1pt} - {\kern 1pt} {\text{HCl}}$ solutions, the intensity of this band decreases with increasing Al concentration, temperature, and pH. This decrease can be explained by the formation of an inner sphere complex between Al3+ and Si(OH)4 according to the reaction: ${\text{Al}}^{{\text{3 + }}} {\text{ + H}}_{\text{4}} {\text{SiO}}_{\text{4}}^{\text{0}} ({\text{aq}}){\text{ }} \Leftrightarrow {\text{ AlH}}_{\text{3}} {\text{SiO}}_{\text{4}}^{{\text{2 + }}} {\text{ + H}}^{\text{ + }} $ The fraction of complexed silica deduced from raman spectroscopic measurements is in good agreement with that calculated for the similar solution compositions and temperatures using the complexation constant generated by Pokrovski et al. (23) from potentiometric measurements. At ambient temperature, the formation of aluminum silicate complex is weak and does not account for more than ca. 5 % of the total Al in most natural waters. As temperature increases, this complex becomes more significant and can dominate Al speciation in acid (pH ≤ 2) hydrothermal solutions.  相似文献   

7.
Single crystal X-ray diffraction is used to study the structure of colorless crystals isolated from the saturated aqueous solution of trivalent iron perchlorate (TIP) in 67.5% perchloric acid. It is found that the compound crystallizes in the trigonal crystal symmetry; parameters of the hexagonal unit cell: a = b = 16.079(2) ?, c = 11.369(2) ?, ?? = ?? = 90°, ?? = 120°, space group R{ie907-1}(S 6), Z = 6, ??calc = 2.021 g/cm3. The structural form of the crystal hydrate is [Fe(H2O)6]3+(ClO 4 ? )3·3H2O. The structure contains two independent complex iron cations. Each of them is in the special position {ie907-2}, but retains the regular octahedral structure: average bond lengths are r(Fe-O) = 1.997(1) ?, {ie907-3}O-Fe-O bond angles differ from 90° by only 0.93°. Independent [Fe(H2O)6]3+ cations form short H-bonds (O??O 2.64 ?) with three crystallization water molecules and somewhat longer H-bonds (O??O 2.73 ?) with three ClO 4 ? anions. The ClO 4 ? anion is disordered over two positions with occupancies of 0.62(2) and 0.37(2). Both positions correspond to the general position. The outer-sphere crystallization water molecule is characterized by the tetrahedral direction of H-bonds, which it forms with two anions and two independent [Fe(H2O)6]3+ cations. All water molecules are in the general position. The Raman spectroscopic study of polycrystalline samples reveals weak bands belonging to the internal vibrations of two types of water molecules. The least broad bands are assigned to the transitions of crystallization water molecules whose symmetry is insignificantly lowered by two anion-molecular Hbonds. Anomalously broad bands are assigned to the transitions of a coordinated water molecule whose symmetry is more lowered by intermolecular and anion-molecular H-bonds.  相似文献   

8.
The application of ultrasound for the synthesis of ternary oxide AgMO2 (M=Fe, Ga) was investigated. Crystalline α-AgFeO2 was obtained from the alkaline solutions of silver and iron hydroxides by sonication for 40 minutes. α-AgFeO2 was found to absorb optical radiation in the 300-600 nm range as shown by diffuse reflectance spectroscopy. The Raman spectrum of α-AgFeO2 exhibited two bands at 345 and 638 cm−1. When β-NaFeO2 was sonicated with aqueous silver nitrate solution for 60 minutes, β-AgFeO2 possessing orthorhombic structure was obtained as the ion-exchanged product. The Raman spectrum of β-AgFeO2 showed four strong bands at 295, 432, 630 and 690 cm−1. Sonication of β-NaGaO2 with aqueous silver nitrate solution for 60 minutes resulted in olive green colored, α-AgGaO2. The diffuse reflectance spectrum and the EDX analysis confirmed that the ion-exchange through sonication was complete. The Raman spectrum of α-AgGaO2 had weak bands at 471 and 650 cm−1.  相似文献   

9.
Optical absorption bands at ~18772 and ~18807 cm-1, previously assigned to A2Δ-X2Π electronic origin band transitions of the linear carbon-chain radicals C5H and C5D, respec-tively, have been reinvestigated. The spectra have been recorded in direct absorption apply-ing cavity ring-down spectroscopy to a supersonically expanding acetylene/helium plasma. The improved spectra allow deducing a l-C5H upper state spin-orbit coupling constant A'=-0.7(3) cm-1 and a A2Δ lifetime of 1.6±0.3 ps.  相似文献   

10.
Variational (?30 000 determinants) and perturbational (?3.5 million determinants) Localized Multireference Configuration Interaction (LMRCI) calculations includingf polarization functions are made to study the role played by the three-body terms in the stabilization energy of three selected geometries of the silver trimer: linear, equilateral and a Jahn-Teller obtuse triangle conformation. A comparative analysis of the relative stability of these geometries is done through a many-body decomposition of the interaction energy. Like in Cu3, the most symmetrical arrangement (i.e. an equilateral triangle) is found to be less stable than the obtuse triangle because it has the highest three-body repulsion energy. The absolute minimum is the obtuse triangle having a Jahn-Teller stabilization energy of 328 cm?1. Unlike Cu3, the linear geometry is found to be less stable than the equilateral by 1282cm?1. Results show again the importance of three-body terms in the total interaction energy of these trimers.  相似文献   

11.
The previously measured relative cross section function for electron impact ionization (EII) of neutral Ag2 has now been calibrated quantitatively by combining the electron impact ionization with in situ non resonant two photon ionization (NR2PI). By comparing the NR2PI saturation intensities measured for Ag 2 + and Ag+ with the corresponding EII intensities, the ratio between the electron impact ionization cross sections (EIICS) of neutral Ag2 and Ag was determined to be σAg2Ag=1.53 for an electron energy of 46 eV. This result agrees well with the geometricn 2/3-rule \((\sigma X_n \sim n^{2/3} )\) commonly proposed for the dependence of the EIICS of clustersX n on the cluster sizen.  相似文献   

12.
Electronic Resonance Raman Spectrum of Hexabromo Osmate(IV) Besides the vibrational bands there are other strong bands in the low-temperature Raman spectrum of [OsBr6]2?, which are independent from the excitation line and are interpreted as arising from transitions between the spin-orbit split components of the 3T1g–Os4+ ground state. The band at 2800 cm?1 is anomal polarized and attributable to Γ1(3T1g) → Γ4(3T1g), while the band at 4880 cm?1 is depolarized and therefore assigned to Γ1(3T1g) → Γ5(3T1g). In the electronic Raman spectrum, too, a rigorous resonance-Raman effect is displayed and as far as six overtones of the stretching vibration A1g and as many combination tones especially with T2g are observed. Because of the dynamic Jahn-Teller effect Γ1(3T1g) → Γ3(3T1g) cannot be detected as an electronic Raman transition. Γ1(3T1g) → Γ1(1T1g) at 15915 cm?1 is obtained by luminescence absorption. The results are in good agreement with the absorption spectrum.  相似文献   

13.
Dilute aqueous phosphoric acid solutions have been studied by Raman spectroscopy at room temperature and over a broad temperature range from 5 to 301?°C. R-normalized spectra (Bose?CEinstein correction) have been constructed and used for quantitative analysis. The vibrational modes of H3PO4(aq) (pseudo C3v symmetry) have been assigned. The band with the highest intensity, the symmetric stretch ?? s{P(OH)3}(?? 1(a 1)) is strongly polarized while ?? 4(e), the antisymmetric stretch ?? asP(OH)3) is depolarized. The stretching mode of the phosphoryl group (?CP=O), ?? 2(a1) occurs at 1178?cm?1 and is polarized. In the range between 300 and 600?cm?1, the deformation modes are observed. The deformation mode, ??{PO?CH}, involving the O?CH group has been detected at 1250?cm?1 as a very weak and broad mode. In addition to the modes of phosphoric acid, modes of the dissociation product $\mathrm{H}_{2}\mathrm{PO}_{4}^{ -}(\mathrm{aq})$ have been observed. The mode at 1077?cm?1 has been assigned to ?? s{PO2}, and the mode at 877?cm?1 to ?? s{P(OH)2} which is overlapped by ?? s{P(OH)3} of H3PO4(aq). The modes of $\mathrm{H}_{2}\mathrm{PO}_{4}^{ -} \mathrm{(aq)}$ have been measured in dilute solution and were assigned and presented as well. H3PO4 is hydrated in aqueous solution, which can be verified with Raman spectroscopy by following the modes ?? 2(a1) and ?? 1(a1) as a function of temperature. These modes show a strong temperature dependency. The mode ?? 1(a1) broadens and shifts to lower wavenumbers. The mode ?? 2(a1) on the other hand, shifts to higher wavenumbers and broadens considerably with increases in temperature. At 301?°C the phosphoric acid is almost molecular in nature. In very dilute H3PO4 solutions at room temperature, however, the dissociation product, $\mathrm{H}_{2}\mathrm{PO}_{4}^{ -} \mathrm{(aq)}$ is the dominant species. In these dilute H3PO4(aq) solutions no spectroscopic features could be detected for a hydrogen bonded dimeric species of the formula $\mathrm{H}_{5}\mathrm{P}_{2}\mathrm{O}_{8}^{ -}$ (or the neutral dimeric acid H6P2O8). Pyrophosphate formation, although favored at high temperatures, could not be detected in dilute solution even at 301?°C due to the high water activity. In highly concentrated solutions, however, pyrophosphate formation is observable and in hydrate melts the formation of pyrophosphate is already noticeable at room temperature. Quantitative Raman measurements have been carried out to follow the dissociation of H3PO4(aq) over a very broad temperature range. In the temperature interval from 5.0 to 301.0?°C the pK 1 values for H3PO4(aq) have been determined and thermodynamic data have been derived.  相似文献   

14.
T1 ← S0 absorption and T1 → S0 phosphorescence spectra of neat cystalline hexachloroacetone have been analyzed at 4.2°K. From the lifetime and energy the upper state is assigned as 3*. The spectra are sharp compared to other aliphatic ketones, with the 0-0 band at 26 248 ± 2 cm ?1. The phosphorescence shows two strong progressions; one involving the CO stretching mode at 1784 cm?1 (x), the other a long progression of at least 8 bands involving a mode at 143 cmt-1 (a). The 143 cm?1 progression forming mode can best be asigned to the CO out-of-plane wagging vibration. The absorption shows the same two strong progressions, reduced in frequency to 1270 cmt-1 and 123 cm?1, respectively, but with the progression in mode a broadened with increasing n. The broadening is interpreted as arising from inversion doublets; the close harmonicity up to n = 5 allowing the potential barrier to inversion to be estimated as > 700 cm?1. A feature of the spectra is the absence of low frequency torsional modes suggesting lack of pseudo Jahn-Teller distortion of the triplet state potential surface. For comparison, the phosphorescence of crystalline hexafluoroacetone was also studied at 4.2°K. The spectrum exhibits broad bandedness with a 00 band tentatively assigned at 26 870 ± 20 cm?1.  相似文献   

15.
The Raman spectrum of a single crystal of FeF2 is reported and the transitions in the range of 900–1500 cm?1 are assigned to the spin-orbit levels of the Fe2+ ion in a field of D2h symmetry. The value of the tetragonal and rhombic distortion parameters calculated from the spectra are ?1162 cm?1 and 110 cm?1, respectively and the spin-orbit coupling parameter λ = ?91.3 cm?1. The computed energy level diagram is in agreement with the EPR spectrum of this compound.  相似文献   

16.
The two-photon fluorescence excitation spectrum of pyrene in n-hexane and n-heptane matrices has been measured at 10 K in the region of the first electronic transition (26800–30200 cm?1). The spectrum consists of a rich number of sharp bands, being in general better resolved in n-hexane than in n-heptane matrix. Shpol'skii multiplets have been observed for the most intense bands. A strong two-photon band dominates the spectrum = 1495 cm?1 from the 0—0 line and was assigned to B1u × b1u = Ag symmetry. Other weaker vibronic origins occur in the spectrum which were correlated to vibrational modes of b1u, b2u, b3u and au symmetry. Intense vibronic bands are observed close to the origin of the second electronic transition and were interpreted as combination bands of B1u × b1u × b3g symmetry. A two-photon vibronic theory to account for their intensity is proposed where the electronic moment is linearly expanded in powers of the nuclear displacements.  相似文献   

17.
Multiplet splittings for six excited electronic configurations of the permanganate ion, MnO4, are calculated. Earlier density functional calculations on the same subject are improved upon by the numerical evaluation of some two-electron integrals to resolve certain multideterminantal states. Excellent agreement with the experimental spectrum is obtained, and a reassignment of bands in the 25,000–35,000 cm−1 range is proposed. Fully symmetric (a1) vibrational frequencies are calculated, and the origin and magnitude of the most significant Jahn-Teller distortions of the excited states are discussed. © 1996 John Wiley & Sons, Inc.  相似文献   

18.
Substituent induced13C NMR chemical shifts of side chain carbonyl carbons of several 4-substituted 1-naphthamides have been measured in DMSO-d 6 solvent. Analysis of the substituent induced chemical shifts by the DSP equation gave the regression equation. Both {ie207-1} and {ie207-2} values were negative. The negative sign on {ie207-3} term indicates the operation of a reverse substituent effect and that π-polarisation is the important mechanism for the transmission of substituent effects by inductive effect. Theperi-hydrogen interaction in naphthamides forces the amide group out of the plane of the naphthalene ring.  相似文献   

19.
It is found that electrosurface transition (EST) through eutectic interfaces of (?/+)WO3|MeWO4(+/?) induced by electric field is a reversible process. In the case of the (?/+) polarity, nominally, in the ??direct experiment??, macro amounts of WO3 from a W 3 (?) brick are drawn in the (+) direction onto the inner surface of MeWO4 forming a two-phase {ie1070-1} composite. Simultaneously, nonequivalent countertransport of Me 2+ within the W 3 (?) brick occurs, which changes the color of W 3 (?) from the natural hue to dark-green. Intercalation of Me 2+ into W 3 (?) is proved by several spectroscopic methods. The key role in the EST phenomenon belongs to a nonautonomous electrolytic phase of MeW-s formed on the contact interface with WO3|MeWO4. The composition of MeW-s is close to W/Me ?? 2. As a result of EST, the cell acquires a more complicated structure: {fx1070-1} where |///| are interface regions occupied by the MeW-s phase. At the cathodic boundary of subcell {fx1070-2} the following process occurs: {fx1070-3}, The process at the anodic boundary is: {fx1070-4}. Ultimately, WO3 is transported in the (+) direction (into the composite) and Me 2+ penetrates under the effect of the gradient in chemical potential into W 3 (?) forming a dark-green Me x WO3 phase with its front reaching the (?) Pt electrode. After the end of the ??direct experiment??, the cell polarity was changed to (+/?) and the ??reverse experiment?? was carried out. Now, on the cathodic boundary | 4 of subcell {fx1070-5} anions (WO4)2? are generated that are discharged on boundary 3 | to oxide WO3 that is intercalated into the right boundary of MeWO4 ? (3), where the rightmost composite region {ie1070-2} is formed. Thus, the mass of W 3 (?) decreases; it becomes dark-green (see above) and the mass of the MeWO4 disk continues growing and now its structure is as follows {ie1070-3}. It is important that the left W 3 (+) disk that was dark-green after the ??direct experiment?? gradually becomes lighter in the ??reverse experiment?? up to its natural pale green color, i.e., Me 2+ is deintercalated from it: Me 2+: Me x WO3 + 1/2O2 ?? xMe 2+ + 2e + WO3. It is found that dependences of variations of disk masses ??m(Q) practically coincide for the ??direct?? and ??reverse?? experiments.  相似文献   

20.
Temperature-concentration dependence of the electrical conductivity in glasses of the Zn(PO3)2-NaF system was studied and compared with similar dependences for glasses of other systems. The extremal dependences log σ = f([Na+]) and {ie937-1} are interpreted from the standpoint of a macroscopically inhomogeneous structure of the glasses under study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号