首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 262 毫秒
1.
This paper is concerned with the solution of nonlinear algebraic systems of equations. For this problem, we suggest new methods, which are combinations of the nonlinear ABS methods and quasi-Newton methods. Extensive numerical experiments compare particular algorithms and show the efficiency of the proposed methods.The authors are grateful to Professors C. G. Broyden and E. Spedicato for many helpful discussions.  相似文献   

2.
ABS methods are a large class of algorithms for solving continuous and integer linear algebraic equations, and nonlinear continuous algebraic equations, with applications to optimization. Recent work by Chinese researchers led by Zunquan Xia has extended these methods also to stochastic, fuzzy and infinite systems, extensions not considered here. The work on ABS methods began almost thirty years. It involved an international collaboration of mathematicians especially from Hungary, England, China and Iran, coordinated by the university of Bergamo. The ABS method are based on the rank reducing matrix update due to Egerváry and can be considered as the most fruitful extension of such technique. They have led to unification of classes of methods for several problems. Moreover they have produced some special algorithms with better complexity than the standard methods. For the linear integer case they have provided the most general polynomial time class of algorithms so far known; such algorithms have been extended to other integer problems, as linear inequalities and LP problems, in over a dozen papers written by Iranian mathematicians led by Nezam Mahdavi-Amiri. ABS methods can be implemented generally in a stable way, techniques existing to enhance their accuracy. Extensive numerical experiments have shown that they can outperform standard methods in several problems. Here we provide a review of their main properties, for linear systems and optimization. We also give the results of numerical experiments on some linear systems. This paper is dedicated to Professor Egerváry, developer of the rank reducing matrix update, that led to ABS methods.  相似文献   

3.
Abaffy, Broyden, and Spedicato (ABS) have recently proposed a class of direct methods for solving nonsparse linear systems. It is the purpose of this paper to demonstrate that with proper choice of parameters, ABS methods exploit sparsity in a natural way. In particular, we study the choice of parameters which corresponds to an LU-decomposition of the coefficient matrix. In many cases, the fill-in, represented by the nonzero elements of the deflection matrix, uses less storage than the corresponding fill-in of an explicit LU factorization. Hence the above can be a viable and simple method for solving sparse linear systems. A simple reordering scheme for the coefficient matrix is also proposed for the purpose of reducing fill-in of the deflection matrices.  相似文献   

4.
A generalization of the class of direct methods for linear systems recently introduced by Abaffy, Broyden and Spedicato is obtained by applying these algorithms to a scaled system. The resulting class contains an essentially free parameter at each step, giving a unified approach to finitely terminating methods for linear systems. Various properties of the generalized class are presented. Particular attention is paid to the subclasses that contain the classic Hestenes-Stiefel method and the Hegedus-Bodocs biorthogonalization methods.This work was partially supported by CNR under contract 85.02648.01.  相似文献   

5.
ABS算法是20世纪80年代初,由Abaffy,Broyden和Spedicato完成的用于求解线性方程组的含有三个参量的投影算法,是一类有限次迭代直接法。目前,ABS算法不仅可以求解线性与非线性方程组,还可以求解线性规划和具有线性约束的非线性规划等问题。本文即是利用ABS算法求解特征值互补问题的一种尝试,构造了求解特征值互补问题的ABS算法,证明了求解特征值互补问题的ABS算法的收敛性。数值例子充分验证了求解特征值互补问题的ABS算法的有效性。  相似文献   

6.
The ABS class for linear and nonlinear systems has been recently introduced by Abaffy, Broyden, Galantai and Spedicato. Here we consider various ways of applying these algorithms to the determination of the minimal euclidean norm solution of over-determined linear systems in the least squares sense. Extensive numerical experiments show that the proposed algorithms are efficient and that one of them usually gives better accuracy than standard implementations of the QR orthogonalization algorithm with Householder reflections.  相似文献   

7.
Classes of integer Abaffy–Broyden–Spedicato (ABS) methods have recently been introduced for solving linear systems of Diophantine equations. Each method provides the general integer solution of the system by computing an integer solution and an integer matrix, named Abaffian, with rows generating the integer null space of the coefficient matrix. The Smith normal form of a general rectangular integer matrix is a diagonal matrix, obtained by elementary nonsingular (unimodular) operations. Here, we present a class of algorithms for computing the Smith normal form of an integer matrix. In doing this, we propose new ideas to develop a new class of extended integer ABS algorithms generating an integer basis for the integer null space of the matrix. For the Smith normal form, having the need to solve the quadratic Diophantine equation, we present two algorithms for solving such equations. The first algorithm makes use of a special integer basis for the row space of the matrix, and the second one, with the intention of controlling the growth of intermediate results and making use of our given conjecture, is based on a recently proposed integer ABS algorithm. Finally, we report some numerical results on randomly generated test problems showing a better performance of the second algorithm in controlling the size of the solution. We also report the results obtained by our proposed algorithm on the Smith normal form and compare them with the ones obtained using Maple, observing a more balanced distribution of the intermediate components obtained by our algorithm.  相似文献   

8.
Summary In this paper we consider an extension to nonlinear algebraic systems of the class of algorithms recently proposed by Abaffy, Broyden and Spedicato for general linear systems. We analyze the convergence properties, showing that under the usual assumptions on the function and some mild assumptions on the free parameters available in the class, the algorithm is locally convergent and has a superlinear rate of convergence (per major iteration, which is computationally comparable to a single Newton's step). Some particular algorithms satisfying the conditions on the free parameters are considered.  相似文献   

9.
Using a strict bound of Spedicato to the condition number of bordered positive-definite matrices, we show that the scaling parameter in the ABS class for linear systems can always be chosen so that the bound of a certain update matrix is globally minimized. Moreover, if the scaling parameter is so chosen at every iteration, then the condition number itself is globally minimized. The resulting class of optimally conditioned algorithms contains as a special case the class of optimally stable algorithms in the sense of Broyden.This work was done in the framework of research supported by MPI, Rome, Italy, 60% Program.  相似文献   

10.
Numerical results are obtained on sequential and parallel versions of ABS algorithms for linear systems for both full matrices andq-band matrices. The results using the sequential algorithm on full matrices indicate the superiority of a particular implementation of the symmetric algorithm. The condensed form of the algorithm is well suited for implementation in a parallel environment, and results obtained on the IBM 4381 system favor a synchronous implementation over the asynchronous one. Results are obtained from sequential implementations of theLU, Cholesky, and symmetric algorithms of the ABS class forq-band matrices able to reduce memory storage. A simple parallelization of do-loops for calculating components gives interesting performances.This work has been developed in the framework of a collaboration between IBM-ECSEC, Rome, Italy, and the Department of Mathematics of the University of Bergamo, Bergamo, Italy.The author is grateful to Prof. J. Abaffy (University of Economics, Budapest), Prof. L. Dixon (Hatfield Polytechnic), and Prof. E. Spedicato (Department of Mathematics, University of Bergamo) for useful suggestions.  相似文献   

11.
A Class of Collinear Scaling Algorithms for Unconstrained Optimization. An appealing approach to the solution of nonlinear optimization problems based on conic models of the objective function has been in troduced by Davidon (1980). It leads to a broad class of algorithms which can be considered to generalize the existing quasi-Newton methods. One particular member of this class has been deeply discussed by Sorensen (1980), who has proved some interesting theoretical properties. In this paper, we generalize Sorensen's technique to Spedicato three-parameter family of variable-metric updates. Furthermore, we point out that the collinear scaling three- parameter family is essentially equivalent to the Spedicato three-parameter family. In addition, numerical expriments have been carried out to compare some colliner scaling algorithms with a straightforward implementation of the BFGS quasi-Newton method.  相似文献   

12.
We first introduce some main problems in pharmacokinetics and then we propose methods for their resolution. Of course, identification problem is considered. A numerical efficient method is given. It brings back to the resolution of a succession of linear algebraic systems. In the case of non unicity we suggest an approach based on the adjunction of a criterion to minimize. The last part studies the optimal injection of a drug associated to an optimization criterion. An explicit solution can be found for a n-compartments linear system.  相似文献   

13.
New SDIRKN methods specially adapted to the numerical integration of second-order stiff ODE systems with periodic solutions are obtained. Our interest is focused on the dispersion (phase errors) of the dominant components in the numerical oscillations when these methods are applied to the homogeneous linear test model. Based on this homogeneous test model we derive the dispersion and P-stability conditions for SDIRKN methods which are assumed to be zero dissipative. Two four-stage symplectic and P-stable methods with algebraic order 4 and high order of dispersion are obtained. One of the methods is symmetric and sixth-order dispersive whereas the other method is nonsymmetric and eighth-order dispersive. These methods have been applied to a number of test problems (linear as well as nonlinear) and some numerical results are presented to show their efficiency when they are compared with other methods derived by Sharp et al. [IMA J. Numer. Anal. 10 (1990) 489–504].  相似文献   

14.
We construct an algebraic multigrid (AMG) based preconditioner for the reduced Hessian of a linear‐quadratic optimization problem constrained by an elliptic partial differential equation. While the preconditioner generalizes a geometric multigrid preconditioner introduced in earlier works, its construction relies entirely on a standard AMG infrastructure built for solving the forward elliptic equation, thus allowing for it to be implemented using a variety of AMG methods and standard packages. Our analysis establishes a clear connection between the quality of the preconditioner and the AMG method used. The proposed strategy has a broad and robust applicability to problems with unstructured grids, complex geometry, and varying coefficients. The method is implemented using the Hypre package and several numerical examples are presented.  相似文献   

15.
16.
During the last few years, conjugate-gradient methods have been found to be the best available tool for large-scale minimization of nonlinear functions occurring in geophysical applications. While vectorization techniques have been applied to linear conjugate-gradient methods designed to solve symmetric linear systems of algebraic equations, arising mainly from discretization of elliptic partial differential equations, due to their suitability for vector or parallel processing, no such effort was undertaken for the nonlinear conjugate-gradient method for large-scale unconstrained minimization.Computational results are presented here using a robust memoryless quasi-Newton-like conjugate-gradient algorithm by Shanno and Phua applied to a set of large-scale meteorological problems. These results point to the vectorization of the conjugate-gradient code inducing a significant speed-up in the function and gradient evaluation for the nonlinear conjugate-gradient method, resulting in a sizable reduction in the CPU time for minimizing nonlinear functions of 104 to 105 variables. This is particularly true for many real-life problems where the gradient and function evaluation take the bulk of the computational effort.It is concluded that vector computers are advantageous for largescale numerical optimization problems where local minima of nonlinear functions are to be found using the nonlinear conjugate-gradient method.This research was supported by the Florida State University Supercomputer Computations Research Institute, which is partially funded by the US Department of Energy through Contract No. DE-FC05-85ER250000.  相似文献   

17.
In a series of recent papers, Oren, Oren and Luenberger, Oren and Spedicato, and Spedicato have developed the self-scaling variable metric algorithms. These algorithms alter Broyden's single parameter family of approximations to the inverse Hessian to a double parameter family. Conditions are given on the new parameter to minimize a bound on the condition number of the approximated inverse Hessian while insuring improved step-wise convergence.Davidon has devised an update which also minimizes the bound on the condition number while remaining in the Broyden single parameter family.This paper derives initial scalings for the approximate inverse Hessian which makes members of the Broyden class self-scaling. The Davidon, BFGS, and Oren—Spedicato updates are tested for computational efficiency and stability on numerous test functions, with the results indicating strong superiority computationally for the Davidon and BFGS update over the self-scaling update, except on a special class of functions, the homogeneous functions.  相似文献   

18.
Many problems arising in different fields of science and engineering can be reduced, by applying some appropriate discretization, either to a system of linear algebraic equations or to a sequence of such systems. The solution of a system of linear algebraic equations is very often the most time-consuming part of the computational process during the treatment of the original problem, because these systems can be very large (containing up to many millions of equations). It is, therefore, important to select fast, robust and reliable methods for their solution, also in the case where fast modern computers are available. Since the coefficient matrices of the systems are normally sparse (i.e. most of their elements are zeros), the first requirement is to efficiently exploit the sparsity. However, this is normally not sufficient when the systems are very large. The computation of preconditioners based on approximate LU-factorizations and their use in the efforts to increase further the efficiency of the calculations will be discussed in this paper. Computational experiments based on comprehensive comparisons of many numerical results that are obtained by using ten well-known methods for solving systems of linear algebraic equations (the direct Gaussian elimination and nine iterative methods) will be reported. Most of the considered methods are preconditioned Krylov subspace algorithms.  相似文献   

19.
Every Newton step in an interior-point method for optimization requires a solution of a symmetric indefinite system of linear equations. Most of today's codes apply direct solution methods to perform this task. The use of logarithmic barriers in interior point methods causes unavoidable ill-conditioning of linear systems and, hence, iterative methods fail to provide sufficient accuracy unless appropriately preconditioned. Two types of preconditioners which use some form of incomplete Cholesky factorization for indefinite systems are proposed in this paper. Although they involve significantly sparser factorizations than those used in direct approaches they still capture most of the numerical properties of the preconditioned system. The spectral analysis of the preconditioned matrix is performed: for convex optimization problems all the eigenvalues of this matrix are strictly positive. Numerical results are given for a set of public domain large linearly constrained convex quadratic programming problems with sizes reaching tens of thousands of variables. The analysis of these results reveals that the solution times for such problems on a modern PC are measured in minutes when direct methods are used and drop to seconds when iterative methods with appropriate preconditioners are used.  相似文献   

20.
We introduce a hybrid Gegenbauer (ultraspherical) integration method (HGIM) for solving boundary value problems (BVPs), integral and integro-differential equations. The proposed approach recasts the original problems into their integral formulations, which are then discretized into linear systems of algebraic equations using Gegenbauer integration matrices (GIMs). The resulting linear systems are well-conditioned and can be easily solved using standard linear system solvers. A study on the error bounds of the proposed method is presented, and the spectral convergence is proven for two-point BVPs (TPBVPs). Comparisons with other competitive methods in the recent literature are included. The proposed method results in an efficient algorithm, and spectral accuracy is verified using eight test examples addressing the aforementioned classes of problems. The proposed method can be applied on a broad range of mathematical problems while producing highly accurate results. The developed numerical scheme provides a viable alternative to other solution methods when high-order approximations are required using only a relatively small number of solution nodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号