首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have used the sol-gel template synthesis method to obtain mesoporous zirconium-containing titanium dioxide films and have studied their structural and sorption characteristics, surface acid function, and photocatalytic activity during gas-phase oxidation of aliphatic alcohols. We have shown that the zirconium content changes the acidity and specific surface area of the films, determining the rate at which the studied processes occur and the relative yield of reaction products. __________ Translated from Teoreticheskaya i éksperimental’naya Khimiya, Vol. 41, No. 6, pp. 354–359, November–December, 2005.  相似文献   

2.
A TiO2 thin buffer layer was introduced between the (Pb0.4Sr0.6)TiO3 (PST) film and the Pt/Ti/SiO2/Si substrate in an attempt to improve their electrical properties. Both TiO2 and PST layers were prepared by a chemical solution deposition method. It was found that the TiO2 buffer layer increased the (100)/(001) preferred orientation of PST and decreased the surface roughness of the films, leading to an enhancement in electrical properties including an increase in dielectric constant and in its tunability by DC voltage, as well as a decrease in dielectric loss and leakage current density. At an optimized thickness of the TiO2 buffer layer deposited using 0.02 mol/l TiO2 sol, the 330-nm-thick PST films had a dielectric constant, loss and tunability of 1126, 0.044 and 60.7% at 10 kHz, respectively, while the leakage current density was 1.95 × 10−6 A/cm2 at 100 kV/cm.  相似文献   

3.
At present, carbon dioxide is considered the largest contributor among greenhouse gases. This review covers the current state of problem of carbon dioxide emissions from industrial and combustion processes, the principle of photocatalysis, existing literature related to photocatalytic CO2 reduction over TiO2 based catalysts and the effects of important parameters on the process performance including light wavelength and intensity, type of reductant, metal-modified surface, temperature and pressure. Presented at the 34th International Conference of the Slovak Society of Chemical Engineering, Tatranské Matliare, 21–25 May 2007.  相似文献   

4.
Nitrogen-doped TiO2, a novel photocatalyst active in the decomposition of organic pollutants using visible light, contains several different types of paramagnetic centers. These are molecular species, such as NO and NO2 radicals and other species, deeply interacting with the TiO2 structure. All or part of these species is related to specific properties of the solid. Electron paramagnetic resonance has been employed to characterize the N-containing paramagnetic species present in N-doped anatase TiO2 powders obtained via sol-gel synthesis. In the present work attention is focused on molecular species generated during the synthesis process and segregated in cavities of the TiO2 structure.  相似文献   

5.
TiO2–SiO2 composite nanoparticles were prepared by a sol–gel process. To obtain the assembly of TiO2–SiO2 composite nanoparticles, different molar ratios of Ti/Si were investigated. Polyurethane (PU)/(TiO2–SiO2) hybrid films were synthesized using the “grafting from” technique by incorporation of modified TiO2–SiO2 composite nanoparticles building blocks into PU matrix. Firstly, 3-aminopropyltriethysilane was employed to encapsulate TiO2–SiO2 composite nanoparticles’ surface. Secondly, the PU shell was tethered to the TiO2–SiO2 core surface via surface functionalized reaction. The particle size of TiO2–SiO2 composite sol was performed on dynamic light scattering, and the microstructure was characterized by X-ray diffraction and Fourier transform infrared. Thermogravimetric analysis and transmission electron microscopy (TEM) employed to study the hybrid films. The average particle size of the TiO2–SiO2 composite particles is about 38 nm when the molar ratio of Ti/Si reaches to1:1. The TEM image indicates that TiO2–SiO2 composite nanoparticles are well dispersed in the PU matrix.  相似文献   

6.
TiO2 nano-crystalline film and fixed bed photocatalytic reactor were prepared by the sol-gel process using tetrabutylorthotitanate as a precursor and glass tube as the substrate. XRD, AFM, SEM and thickness analysis results indicate that the preparation of nano-crystalline film can be controlled by optimizing experiment process. Under the optimized process, the phase of TiO2 in film is anatase, and the grain size is 3–4 nm. The size of particles, which is about 20-80 nm, can be controlled. The thickness of monolayer film is in nanometer grade. The thickness and particles size in films growing on nanometer film can also be controlled in nanometer grade. As a result, the crack of film can be effectively avoided. Rhodamine degradation results using UV-Vis spectrophotometer show that the activity of nano-crystalline film in the photocatalytic reactor has a good relation with the diameter of TiO2 particles, that is, the film shows high activity when the size is 20 –30 nm and greatly reduced when the size is above 60 nm. The activity of film does not decrease with the increase of film thickness, and this result indicates that nano-crystalline film has no ill influence on the transmissivity of ultraviolet light.  相似文献   

7.
TiO2 sol-gel composite films with dropping molybdenumphosphoric acid (PMoA) have been prepared by sol-gel method. The structure and constitute of composite thin films were studied with Fourier transforms infrared spectroscopy (FT-IR) atomic force microscopy (AFM), and X-ray diffraction (XRD) patterns, respectively. The photochromic behavior and mechanism of composite thin films were investigated with ultraviolet-visible spectra (UV-vis) and electron spin resonance (ESR). FT-IR results showed that the Keggin geometry of PMoA was still preserved inside PMoA/TiO2 composite thin films, and a charge transfer bridge was built at the interface of PMoA and TiO2 through the Mo-O-Ti bond. Surface topography of the composite film showed obvious changes before/after adding PMoA, and the surface topography of composite films showed obvious changes before/after irradiating as well. Composite thin film had reversible photochromic properties. Irradiated with UV light, transparent films changed from colorless to blue and they can bleach completely with ambient air in the dark. ESR results showed that TiO2 were excitated by UV light to produce electrons, which deoxidized PMoA to produce heteropolyblues. The photochromic process of PMoA/TiO2 system was carried through electron transfer mechanism.  相似文献   

8.
TiO2 photocatalysts were synthesized by a hydrothermal method from tetraisopropyl orthotitanate (TPOT) in the presence of NH4F with different NH4F/Ti molar ratios (0, 0.25, and 1). The formation of a well-crystallized anatase phase of TiO2 and the suppression of phase transition to rutile were observed, even at high calcination temperature, owing to the effects of NH4F. The TiO2 synthesized hydrothermally with NH4F exhibited absorption with a shift to the longer wavelengths of the visible-light region. The hydrothermally synthesized TiO2 with a moderate amount of NH4F exhibited high photocatalytic activity for the degradation of alcohol diluted in water under both UV-light and visible-light irradiations.  相似文献   

9.
Pure TiO2 and S-doped TiO2 sol–gel nanopowders were prepared by controlled hydrolysis-condensation of titanium alkoxides. The influence of different Ti-alkoxides (tetraethyl-, tetraisopropyl- and tetrabutyl-orthotitanate) used in obtaining TiO2 porous materials in similar conditions (water/alkoxide ratio, solvent/alkoxide ratio, pH and temperature of reaction) has been investigated. The relationship between the synthesis conditions and the properties of titania nanosized powders, such as thermal stability, phase composition, crystallinity, morphology and size of particles, BET surface area and the influence of dopant was investigated. The nature of the alkyl group strongly influences the main characteristics of the obtained oxide powders, fact which is pointed out by thermal analysis, X-ray diffraction, TEM and BET surface area measurements.  相似文献   

10.
Semiconductor photocatalysis is a process that harnesses light energy in chemical conversions. In particular, its applications to environmental remediation have been intensively investigated. The characteristics of TiO2, the most popular photocatalyst, is briefly described and selected studies on the degradation/conversion of various recalcitrant pollutants using pure and modified TiO2 photocatalysts, which were carried out in this group, are reviewed. Photocatalytic reactions are multi-phasic and take place at interfaces of not only water/TiO2 and air/TiO2 but also solid/TiO2. Examples of photocatalytic reactions of various organic and inorganic substrates that are converted through the photocatalytic oxidation or reduction are introduced. TiO2 has been modified in various ways to improve its photocatalytic activity. Surface modifications of TiO2 that include surface platinization, surface fluorination, and surface charge alteration are discussed and their applications to pollutants degradation are also described in detail.  相似文献   

11.
TiO2 nanofibers were prepared from tetrabutyl titanate sol precursors by using electrospun method. X-ray diffraction (XRD) and atomic force microscope (AFM) were used to characterize their crystal structure and morphology feature. The results demonstrated that TiO2 nanofibers possessed anatase phase and the average diameter of TiO2 nanofibers was about 150 nm. The photocatalytic property of TiO2 nanofibers was evaluated for the photodecomposition of methyl orange solution. And TiO2 nanofibers exhibited high photocatalytic activities with transfer efficiency about 100% after 20 min.  相似文献   

12.
Highly photoactive bi-phase nanocrystalline TiO2 photocatalyst was prepared by a solvent evaporation-induced crystallization (SEIC) method, and calcined at different temperatures. The obtained TiO2 photocatalyst was characterized with X-ray diffraction (XRD), transmission electron microscopy (TEM) and BET surface areas. The photocatalytic activity was evaluated by the photocatalytic oxidation of acetone in air. The results show that solvent evaporation can promote the crystallization and phase transformation of TiO2 at 100°C. When calcination temperatures are below 600°C, the prepared TiO2 powders show bimodal pore size distributions in the mesoporous region. At 700°C, the pore size distributions exhibit monomodal distribution of the inter-aggregated pores due to the collapse of the intra-aggregated pores. At 100°C, the obtained TiO2 photocatalyst by this method shows good photocatalytic activity, and at 400°C, its photocatalytic activity exceeds that of Degussa P25. This may be attributed to the fact that the prepared TiO2 photocatalyst has higher specific surface areas, smaller crystallite size and bimodal pore size distribution.  相似文献   

13.
Within the framework of the density functional theory (DFT), the electronic structure of monooxodioxovanadium functional groups in tetrahedral coordination, which model the active centers (ACs) of fine supported catalysts V2O5/SiO2 and V2O5/TiO2, has been analyzed. The optimal structures of three ACs as possible models of monomeric and polymeric oxovanadium forms on the carriers with low vanadium content were determined. The modified DFT method involving the time dependence of Kohn-Sham equation (TDDFT) was used for the adopted AC models to calculate the energies of the excited states, and optical spectra of the absorption in 25000–60000 cm?1 region were reconstructed on their base. The spectrum in this region is due to O → V charge transfer. The features of electronic spectra with the charge transfer for V2O5/SiO2 and V2O5/TiO2 catalysts and the vibrational spectra of three AC models corresponding to the monomeric and dimeric oxovanadium forms of the supported catalysts V2O5/SiO2 and V2O5/TiO2 were defined. The detailed interpretation of normal vibration frequencies is given. The frequencies typical of the monomeric and dimeric oxovanadium forms on the carrier surface were identified.  相似文献   

14.
Mesoporous TiO2/γ-Al2O3 composite granules were prepared by combining sol–gel/oil-drop method, using various titania solution. The product granules can be used as a photocatalyst or adsorbent in moving, fluidized bed reactors. The phase composition and pore structure of the granules can be controlled by calcination temperature and using different titania solution. In the photocatalysis of NH3 decomposition, TiO2/γ-Al2O3 granules using Degussa P25 powder treated thermally at 450 °C showed the highest catalytic ability. However, TiO2/γ-Al2O3 granules using titania made by hydrothermal method had comparable performance in NH3 decomposition.  相似文献   

15.
Titania–silica composite have been prepared using polyethylene glycol (PEG) with different molecular weights (M w), PEG20000, PEG10000, and PEG2000, as template in supercritical carbon dioxide (SC CO2). The composite precursors were dissolved in SC CO2 and impregnated into PEG templates using SC CO2 as swelling agent and carrier. After removing the template by calcination at suitable temperature, the titania–silica composite were obtained. The composite were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, and nitrogen sorption–desorption experiment. Photocatalytic activity of the samples has been investigated by photodegradation of methyl orange. Results indicate that there are many Si–O–Ti linkages in the TiO2/SiO2 composite; the PEG template has a significant influence on the structure of TiO2/SiO2. In addition, the TiO2/SiO2 prepared with PEG10000 exhibited high photocatalytic efficiency. So this work supplies a clue to control and obtain the TiO2/SiO2 composite with different photocatalytic reactivity with the aid of suitable PEG template in supercritical CO2.  相似文献   

16.
Influences of α-MnO2, β-MnO2, and δ-MnO2 on the photocatalytic activity of Degussa P-25 TiO2 have been investigated through the photocatalytic degradation of methyl orange. The TiO2 photocatalyst, before and after being contaminated by MnO2, was characterized by UV-visible diffuse reflectance spectroscopy (UV-vis DRS), photoluminescence (PL), and X-ray photoelectron spectroscopy (XPS). The results showed that photocatalytic activity of TiO2 could be inhibited significantly or completely deactivated due to the presence of even a small amount of MnO2 particles. It was found that the poisoning effect varied with the crystal phases of MnO2 and the effect was in the order δ-MnO2 >α-MnO2 >β-MnO2. The poisoning effect was attributed to the formation of heterojunctions between MnO2 and TiO2 particles. The heterojunctions changed the chemical state of Ti4+ and O2− sites in the crystalline phase of TiO2. MnO2 in contact with TiO2 particles also broadens the band-gap of TiO2, which decreases UV absorption of TiO2. It can also create some deep impurity energy levels serving as photoelectron-photohole recombination center, which accelerates the electron-hole recombination. Supported by the National Natural Science Foundation of China (Grant No. 20477009) and the Natural Science Foundation of Hebei Province (Grant No. E2005000183)  相似文献   

17.
Amorphous precursor powders have proven to be highly advantageous for the sol–gel processing of TiO2 thin films. Oxide yield, density, solubility, and thermal degradation of powders prepared under various conditions were determined; the thermoanalytical data could be assigned to the oxidative decomposition of different organic constituents. Certain powders are suitable for the preparation of alcohol-based sols, whereas also aqueous coating solutions can be prepared from others. Thin films prepared from both systems show excellent adhesion and optical properties when deposited on borosilicate glass substrates.  相似文献   

18.
We analyzed the dielectric pellet bed discharge-photocatalyst hybrid process for NO and SO2 removal. A cylindrical-wire type discharge reactor was packed with glass beads as dielectric pellets and the plasmas were generated by dielectric pellet bed discharge. The TiO2 photocatalysts were coated onto the glass beads by the dip-coating method and were activated by the light from discharge. Experiments were carried out for three cases: NO removal only, SO2 removal only, and simultaneous NO and SO2 removal. As the voltage applied to the plasma reactor increased, or as the residence time increased, the NO and SO2 removal efficiencies increased. With increasing initial NO and SO2 concentrations, the NO and SO2 removal efficiencies decrease. The removal efficiencies for simultaneous NO and SO2 removal are lower than those for NO only or SO2 only.  相似文献   

19.
The semiconductor properties of the interface TiO2/electrolyte in high organized porous oxide structures were analyzed by means of impedance spectroscopy near the flat band potential. The impedance and capacitance studies performed on the as-anodized and thermally treated samples (anatase) indicate the presence of a duplex structure formed by (1) the oxide at the bottom of the pores and (2) the walls of pores with different donor densities and surface state concentrations.  相似文献   

20.
To enhance film conformality together with electrical property suitable for dynamic random access memory (DRAM) capacitor dielectric, the effects of oxidant and post heat treatment were investigated on aluminum and titanium oxide (Al2O3–TiO2) bilayer (ATO) thin film formed by atomic layer deposition method. For the conformal deposition of Al2O3 thin film, the O3 oxidant required a higher deposition temperature, more than 450 °C, while H2O or combined oxygen sources (H2O+O3) needed a wide range of deposition temperatures ranging from 250 to 450 °C. Conformal deposition of the TiO2 thin film was achieved at around 325 °C regardless of the oxidants. The charge storage capacitance, measured from the ATO bilayer (4 nm Al2O3 and 2 nm TiO2) deposited at 450 °C for Al2O3 and 325 °C for TiO2 with O3 oxidant on the phosphine-doped poly silicon trench, showed about 15% higher value than that of 5 nm Al2O3 single layer thin film without any increase of leakage current. To maintain the improved electrical property of the ATO bilayer for DRAM application, such as enhanced charge capacitance without increase of leakage current, upper electrode materials and post heat treatments after electrode formation must be selected carefully. Dedicated to Professor Su-Il Pyun on the occasion of his 65th birthday.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号